1) Constants

#define MINUTE 10 //Number of time steps in 1 minute
#define HOUR (60 * MINUTE) //Number of time steps in 1 hour
#define DAY 14400 //Number of time steps in one day
#define pMHC_HALFLIFE 60

#define MAX_DCS 300
//used here, but will be moved to DC definitions

***Talk to MARK
CD4+ T-Cells

1) Constants

#define CD4_RESTING_MOVEMENT_PERIOD (2 * MINUTE)

#define CD4_ACTIVE_MOVEMENT_PERIOD (4 * MINUTE)

#define CD4_MIN_CELL_AGE (165 * DAY)

#define CD4_MAX_AGE (365 * DAY)

#define CD4_MAX_AGE_STD (15 * DAY)
#define CD4_pMHC_FOR_MEDIAN_BINDING_PROB 150

#define CD4_SHAPE_BINDING_PROB_CURVE 15

#define PRIMING_THESHOLD_VALUE 200
#define CD4_MAX_BINDING_TIME 14 * HOUR

#define CD4_MAX_BINDING_TIME_STD 3 * HOUR

#define UNBINDING_THRESHOLD 100

#define CD4_TIME_FOR_MEDIAN_PRIMING_PROB (6 * HOUR) * 150 //function of time and pMHC level
#define CD4_SHAPE_PRIMING_PROB_CURVE (CD4_TIME_FOR_MEDIAN_PRIMING_PROB / 10)
#define CD4_MAX_DIVISION 4

#define CD4_DOUBLING_PERIOD (8 * HOUR)

#define CD4_MAX_TIME_EFFECTOR (60 * HOUR)

#define CD4_MAX_TIME_EFFECTOR_STD (1 * DAY)

2) Internal Variables

int death_time //Range: 0 – 5256000 which translates to 365 days
int birth_time //Range: -5256000 – 5256000 which translates to -365 to 365 days
int enter_time //Range: 0 – 5256000 which translates to 365 days
bool cognate //Whether or not the T-cell knows about TB
enum state {RESTING, BOUND, ACTIVE, EFFECTOR, DEAD}

enum next_state {RESTING, BOUND, ACTIVE, EFFECTOR, DEAD}

int dc_bound_time //Range: 0-201600 which translates to 14 days

int dc_unbind_time //Range: 0-201600 which translates to 14 days
int division_counter //Range: 0-4
float priming_history //Range: 0.0 – something greater than 200.0

3) Initialization/Construction (when a cell, new, is created it should have the following parameters)

Recruitment_Constructor()
new.birth_time = counter - rand(CD4_MIN_AGE, CD4_MAX_AGE)

//T-cells that enter the T-Zone are given a random age
new.death_time = new.birth_time + normal(CD4_MAX_AGE, CD4_MAX_AGE_STD)

new.enter_time = counter

new.cognate = !(rand() % 300) //1 in 300 chance
new.state = RESTING

new.next_state = RESTING

new.dc_bound_time = 0

new.priming_history = 0

new.division_counter = 0

Proliferation_Constructor(parent)
new.birth_time = counter

new.death_time = new.birth_time + normal(CD4_MAX_AGE, CD4_MAX_AGE_STD)
new.enter_time = counter

new.cognate = parent.cognate

new.state = parent.state

new.next_state = parent.next_state

new.dc_bound_time = 0
new.priming_history = 0

new.division_counter = parent.division_counter
4) State Changes

if CELL.state == RESTING

if (counter >= CELL.death_time),
CELL.next_state = DEAD

RETURN
if adjacent DC exists, //if there is a DC in the Moore neighborhood
if ((DC.state == LICENSED || DC.state ==MATURE) && CELL.cognate)
a = CD4_pMHC_FOR_MEDIAN_BINDING_PROB
b = CD4_SHAPE_BINDING_PROB_CURVE
x = DC.pMHC

binding_probability = 100/(1+exp(-1*(x-a)/b))

if (rand(0, 100) <= binding_probability)

CELL.dc_bound_time = counter

CELL.dc_unbind_time = CELL.dc_bound_time + normal(CD4_MAX_BINDING_TIME, CD4_MAX_BINDING_TIME_STD)

CELL.next_state = BOUND

RETURN

else

CELL.next_state = RESTING

RETURN

else if CELL.state == BOUND

if (counter >= CELL.death_time)

CELL.next_state = DEAD

RETURN
if ((counter – CELL.birthtime) % HOUR == 0)
if CELL.dc_bound_to.state != DEAD

//Conditions for release:
if ((CELL.priming_history > PRIMING_THESHOLD_VALUE)

 || (DC.n_pMHC < UNBINDING_THRESHOLD)

 || ((counter > (CELL.dc_unbind_time)))
//Calculate activation using probability

c = CD4_TIME_FOR_MEDIAN_PRIMING_PROB
d = CD4_SHAPE_PRIMING_PROB_CURVE

x = DC.n_pMHC * (counter - CELL.dc_bound_time)
priming_probability = 100/(1+exp(-1*(x-c)/d))
if (rand(0,100) <= priming_probability)

CELL.birth_time = counter
CELL.death_time = CELL.birth_time + normal(CD4_MAX_AGE, CD4_MAX_AGE_STD)

CELL.next_state = ACTIVE

CELL.division_counter = 0 //not explicitly necessary
RETURN

else

CELL.next_state = RESTING

CELL.priming_history = 0

RETURN

else //DC cannot be found (because it was deleted) or is dead
CELL.next_state = RESTING

CELL.priming_history = 0

RETURN

else if CELL.state == ACTIVE

if (counter >= CELL.death_time),
CELL.next_state = DEAD

RETURN
if (division counter >= CD4_MAX_DIVISION)

CELL.birth_time = counter

CELL.death_time = CELL.birth_time + normal(CD4_MAX_TIME_EFFECTOR, CD4_MAX_TIME_EFFECTOR_STD)

CELL.next_state = EFFECTOR

RETURN
else if ((counter – CELL.birth_time) >= CD4_DOUBLING_PERIOD)

find and randomly choose empty microcompartment, MC, in Moore neighborhood

if none is available, DO NOTHING!

If open microcompartment, MC, found

CELL.birth_time = counter

CELL.division_counter++

Proliferation_Constructor(CELL, MC)
RETURN

else if CELL.state == EFFECTOR

if (counter >= CELL.death_time)
CELL.next_state = DEAD

RETURN

else

CELL.next_state = EFFECTOR

RETURN

else if CELL.state == DEAD

Delete_Cell(CELL)

RETURN

CD8+ T-Cells

1) Constants

#define CD8_RESTING_MOVEMENT_PERIOD (2 * MINUTE)

#define CD8_ACTIVE_MOVEMENT_PERIOD (4 * MINUTE)

#define CD8_MIN_CELL_AGE (165 * DAY)

#define CD8_MAX_AGE (365 * DAY)

#define CD8_MAX_AGE_STD (15 * DAY)

#define CD8_pMHC_FOR_MEDIAN_BINDING_PROB 150

#define CD8_SHAPE_BINDING_PROB_CURVE 15

#define PRIMING_THESHOLD_VALUE 200

#define CD8_MAX_BINDING_TIME 14 * HOUR

#define CD8_MAX_BINDING_TIME_STD 3 * HOUR

#define UNBINDING_THRESHOLD 100

#define CD8_TIME_FOR_MEDIAN_PRIMING_PROB (6 * HOUR) * 150 //function of time and pMHC level
#define CD8_SHAPE_PRIMING_PROB_CURVE (CD8_TIME_FOR_MEDIAN_PRIMING_PROB / 10)

#define CD8_MAX_DIVISION 8

#define CD8_DOUBLING_PERIOD (8 * HOUR)

#define CD8_MAX_TIME_EFFECTOR (60 * HOUR)

#define CD8_MAX_TIME_EFFECTOR_STD (1 * DAY)

2) Internal Variables

int death_time //Range: 0 – 5256000 which translates to 365 days
int birth_time //Range: -5256000 – 5256000 which translates to -365 to 365 days
int enter_time //Range: 0 – 5256000 which translates to 365 days
bool cognate //Whether or not the T-cell knows about TB
enum state {RESTING, BOUND, ACTIVE, EFFECTOR, DEAD}

enum next_state {RESTING, BOUND, ACTIVE, EFFECTOR, DEAD}

int dc_bound_time //Range: 0-201600 which translates to 14 days

int dc_unbind_time //Range: 0-201600 which translates to 14 days
int division_counter //Range: 0-4
float priming_history //Range: 0.0 – something greater than 200.0

3) Initialization/Construction (when a cell, new, is created it should have the following parameters)

Recruitment_Constructor()
new.birth_time = counter - rand(CD8_MIN_AGE, CD8_MAX_AGE)

//T-cells that enter the T-Zone are given a random age
new.death_time = new.birth_time + normal(CD8_MAX_AGE, CD8_MAX_AGE_STD)

new.enter_time = counter

new.cognate = !(rand() % 300) //1 in 300 chance
new.state = RESTING

new.next_state = RESTING

new.dc_bound_time = 0

new.priming_history = 0

new.division_counter = 0

Proliferation_Constructor(parent)
new.birth_time = counter

new.death_time = new.birth_time + normal(CD8_MAX_AGE, CD8_MAX_AGE_STD)

new.enter_time = counter

new.cognate = parent.cognate

new.state = parent.state

new.next_state = parent.next_state

new.dc_bound_time = 0

new.priming_history = 0

new.division_counter = parent.division_counter

4) State Changes

if CELL.state == RESTING

if (counter >= CELL.death_time),

CELL.next_state = DEAD

RETURN
if adjacent DC exists, //if there is a DC in the Moore neighborhood
if ((DC.state == LICENSED || DC.state ==MATURE) && CELL.cognate)

a = CD8_pMHC_FOR_MEDIAN_BINDING_PROB

b = CD8_SHAPE_BINDING_PROB_CURVE

x = DC.pMHC

binding_probability = 100/(1+exp(-1*(x-a)/b))

if (rand(0, 100) <= binding_probability)

CELL.dc_bound_time = counter

CELL.dc_unbind_time = CELL.dc_bound_time + normal(CD8_MAX_BINDING_TIME, CD8_MAX_BINDING_TIME_STD)

CELL.next_state = BOUND

RETURN

else

CELL.next_state = RESTING

RETURN

else if CELL.state == BOUND

if (counter >= CELL.death_time)

CELL.next_state = DEAD

RETURN
if ((counter – CELL.birthtime) % HOUR == 0)
if CELL.dc_bound_to.state != DEAD

//Conditions for release:

if ((CELL.priming_history > PRIMING_THESHOLD_VALUE)

 || (DC.n_pMHC < UNBINDING_THRESHOLD)

 || ((counter > (CELL.dc_unbind_time)))

//Calculate activation using probability

c = CD8_TIME_FOR_MEDIAN_PRIMING_PROB

d = CD8_SHAPE_PRIMING_PROB_CURVE

x = DC.n_pMHC * (counter - CELL.dc_bound_time)

priming_probability = 100/(1+exp(-1*(x-c)/d))

if (rand(0,100) <= priming_probability)

CELL.birth_time = counter

CELL.death_time = CELL.birth_time + normal(CD8_MAX_AGE, CD8_MAX_AGE_STD)

CELL.next_state = ACTIVE

CELL.division_counter = 0 //not explicitly necessary
RETURN

else

CELL.next_state = RESTING

CELL.priming_history = 0

RETURN

else //DC cannot be found (because it was deleted) or is dead
CELL.next_state = RESTING

CELL.priming_history = 0

RETURN

else if CELL.state == ACTIVE

if (counter >= CELL.death_time),

CELL.next_state = DEAD

RETURN
if (division counter >= CD8_MAX_DIVISION)

CELL.birth_time = counter

CELL.death_time = CELL.birth_time + normal(CD8_MAX_TIME_EFFECTOR, CD8_MAX_TIME_EFFECTOR_STD)

CELL.next_state = EFFECTOR

RETURN
else if ((counter – CELL.birth_time) >= CD8_DOUBLING_PERIOD)

find and randomly choose empty microcompartment, MC, in Moore neighborhood

if none is available, DO NOTHING!

If open microcompartment, MC, found

CELL.birth_time = counter

CELL.division_counter++

Proliferation_Constructor(CELL, MC)
RETURN

else if CELL.state == EFFECTOR

if (counter >= CELL.death_time)
CELL.next_state = DEAD

RETURN

else

CELL.next_state = EFFECTOR

RETURN

else if CELL.state == DEAD

Delete_Cell(CELL)

RETURN

Dendritic Cells

1) Constants

#define DC_MIN_AGE 1 * DAY
#define DC_MAX_AGE 11 * DAY

#define DC_MAX_AGE_STD 2 * DAY
#define pMHC_LIMIT 300

#define pMHC_DECAY_FACTOR 0.999980746097010 //calculated for a half-life of 60 hours
#define IDC_MDC_BOUNDARY 50

#define BINDING_THRESHOLD 200

#define UNBINDING_THRESHOLD 100
#define DC_MAX_TIME_MATURE 60 * HOUR

#define DC_MAX_TIME_MATURE_STD 5 * HOUR
#define PROB_eHELPER_LICENSES_MDC 50
#define DC_TIME_BEING_LICENSED 36 * HOUR

#define DC_TIME_BEING_LICENSED_STD 4 * HOUR
2) Internal Variables

int birth_time //Range: -5256000 – 5256000 which translates to -365 to 365 days
int death_time //Range: 0 – 5256000 which translates to 365 days
int enter_time //Range: 0 – 5256000 which translates to 365 days
enum state {IMMATURE, MATURE, LICENSED, DEAD}

enum next_state {IMMATURE, MATURE, LICENSED, DEAD}

float pMHC //Range: 0.0 – 200.0
int license_time //Range: 0-201600 which translates to 14 days

int license_limit // Range: 0-201600 which translates to 14 days **Range??
3) Initialization/Construction (when a cell, new, is created it should have the following parameters)

Recruitment_Constructor()
new.license_time = 0

new.license_limit = normal((1.5*DAY),(4*HOUR)) //N(21600,2400)
new.birth_time = counter - rand(DC_MIN_AGE, DC_MAX_AGE)

new.death_time = new.birth_time + normal(DC_MAX_AGE, DC_MAX_AGE_STD)

new.enter_time = counter

new.pMHC = rand(0.0, 100.0)

if new.pMHC <= 40.0
new.pMHC = normal(50,20)

else
new.pMHC = normal(150,50) ***WAS normal(250,25)

if new.pMHC < 0

new.pMHC = 0

if new.pMHC > pMHC_LIMIT
new.pMHC = pMHC_LIMIT
if new.pMHC <= (IDC_MDC_BOUNDARY)
new.state = IMMATURE

new.next_state = IMMATURE

RETURN
else
new.birth_time = counter – (normal(20,5) * (6 * HOUR))
new.death_time = new.birth_time + normal(DC_MAX_TIME_MATURE, DC_MAX_TIME_MATURE_STD)

new.state = MATURE

new.next_state = MATURE

RETURN
4) State Changes
if CELL.state == IMMATURE
CELL.pMHC = CELL.pMHC * pMHC_DECAY_FACTOR
if counter >= CELL.death_time
CELL.next_state = DEAD

RETURN
If there is another dendritic cell, DC2, in the Moore neighborhood

if (DC2.state == LICENSED || DC2.state == MATURE)
CELL.birth_time = counter

CELL.death_time = CELL.birth_time + normal(DC_MAX_TIME_MATURE, DC_MAX_TIME_MATURE_STD)
CELL.pMHC = ((BINDING_THRESHOLD) + DC2.pMHC) / 2

CELL.next_state = MATURE

RETURN
CELL.next_state = IMMATURE

RETURN
else if CELL.state == MATURE

CELL.pMHC = CELL.pMHC * pMHC_DECAY_FACTOR
if counter >= CELL.death_time
next_state = DEAD

RETURN
if there is found in the moore neighborhood a CD4+ H Cell, CD4,
if CD4.state == EFFECTOR

licensing_probablility = PROB_eHELPER_LICENSES_MDC

if (rand(0,100) <= licensing_probability)

CELL.birth_time = counter

CELL.death_time = CELL.birth_time + normal(DC_TIME_BEING_LICENSED, DC_TIME_BEING_LICENSED_STD)
CELL.pMHC = UNBINDING_THRESHOLD + 150

CELL.next_state = LICENSED

RETURN
CELL.next_state == MATURE

RETURN
else if CELL.state == LICENSED

CELL.pMHC = CELL.pMHC * pMHC_DECAY_FACTOR
if counter >= CELL.death_time
next_state = DEAD

RETURN
else

CELL.next_state = LICENSED

RETURN
else if CELL.state == DEAD

Delete_Cell(CELL)

RETURN
5) Function Definitions
double normal(const double &mean, const double &std){

 static const double pi=3.1415927;

 double num = RAND_MAX; //defined in <stdlib.h>
 double ran_num;

 static const double r_max = num + 1;

 ran_num = std*sqrt(-2*log((rand()+1)/r_max))*sin(2*pi*rand()/r_max)+mean;

 return ran_num;

}

