VSCSE summer school - short course

Introduction to CUDA

Lecture 7 Floating point precision

Joshua A. Anderson

Objective

- To understand the fundamentals of floating-point representation
- To know the IEEE-754 Floating Point Standard
- CUDA Floating-point speed, accuracy and precision
 - Deviations from IEEE-754
 - Accuracy of device runtime functions
 - fastmath compiler option
 - Future performance considerations

GPU Floating Point Features

	CUDA	SSE	IBM Altivec	Cell SPE
Precision	IEEE 754	IEEE 754	IEEE 754	IEEE 754
Rounding modes for FADD and FMUL	All 4 IEEE, round to nearest, zero, inf, -inf	All 4 IEEE, round to nearest, zero, inf, -inf	Round to nearest only	Round to zero/ truncate only
Denormal handling	 1.x - Flush to zero 2.0 - Supported 	Supported, 1000's of cycles	Supported, 1000's of cycles	Flush to zero
NaN support	Yes	Yes	Yes	No
Overflow and Infinity support	Yes, only clamps to max norm	Yes	Yes	No, infinity
Flags	No	Yes	Yes	Some
Square root	Software	Hardware	Software only	Software only
Division	Software	Hardware	Software only	Software only
Reciprocal estimate accuracy	24 bit	12 bit	12 bit	12 bit
Reciprocal sqrt estimate accuracy	23 bit	12 bit	12 bit	12 bit
log2(x) and 2 ^x estimates accuracy	23 bit	No	12 bit	No 3

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Recorded for the Virtual School of Computational Science and Engineering

What is IEEE floating-point format?

- A floating point binary number consists of three parts:
 - sign (S), exponent (E), and mantissa (M).
 - Each (S, E, M) pattern uniquely identifies a floating point number.
- For each bit pattern, its IEEE floating-point value is derived as:

- value = $(-1)^{S} * M * \{2^{E}\}$, where $1.0 \le M < 10.0_{B}$

• The interpretation of S is simple: S=0 results in a positive number and S=1 a negative number.

Normalized Representation

- Specifying that $1.0_B \le M < 10.0_B$ makes the mantissa value for each floating point number unique.
 - For example, the only one mantissa value allowed for 0.5_{D} is M =1.0
 - $0.5_{\rm D} = 1.0_{\rm B} * 2^{-1}$
 - Neither $10.0_{B} * 2^{-2}$ nor $0.1_{B} * 2^{0}$ qualifies
- Because all mantissa values are of the form 1.XX..., one can omit the "1." part in the representation.
 - The mantissa value of 0.5_D in a 2-bit mantissa is 00, which is derived by omitting "1." from 1.00.

Exponent Representation

- In an n-bits exponent representation, 2ⁿ⁻¹-1 is added to its 2's complement representation to form its excess representation.
 - See Table for a 3-bit exponent representation
- A simple unsigned integer comparator can be used to compare the magnitude of two FP numbers
- Symmetric range for +/exponents (111 reserved)

2's complement	Actual decimal	Excess-3
000	0	011
001	1	100
010	2	101
011	3	110
100	(reserved pattern)	111
101	-3	000
110	-2	001
111	-1	010

A simple, hypothetical 5-bit FP format

• Assume 1-bit S, 2-bit E, and 2-bit M

$$- 0.5_{\rm D} = 1.00_{\rm B} * 2^{-1}$$

- $0.5_D = 0\ 00\ 00$, where S = 0, E = 00, and M = (1.)00

2's complement	Actual decimal	Excess-1
00	0	01
01	1	10
10	(reserved pattern)	11
11	-1	00

Representable Numbers

- The representable numbers of a given format is the set of all numbers that can be exactly represented in the format.
- See Table for representable numbers of an unsigned 3bit integer format

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

8 9

2

Represent Cannot represent f a 5-bit											
	Hypot Zero! rmat										
	No-zero				Abrupt undernow		Gradual underflow				
Е	М	S=0	S=1	S=0	S=1	S=0	S=1				
00	00	2-1	-(2-1)	0	0	0	0				
	01	2-1+1*2-3	-(2 ⁻¹ +1*2 ⁻³)	0	0	1*2-2	-1*2-2				
	10	2-1+2*2-3	-(2 ⁻¹ +2*2 ⁻³)	0	0	2*2-2	-2*2-2				
	11	2-1+3*2-3	-(2 ⁻¹ +3*2 ⁻³)	0	0	3*2-2	-3*2-2				
01	00	20	-(2 ⁰)	20	-(2 ⁰)	20	-(2 ⁰)				
	01	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	20+1*2-2	-(20+1*2-2)	20+1*2-2	-(20+1*2-2)				
	10	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	-(2 ⁰ +2*2 ⁻²)				
	11	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)				
10	00	21	-(21)	21	-(21)	21	-(21)				
	01	21+1*2-1	-(2 ¹ +1*2 ⁻¹)	21+1*2-1	-(21+1*2-1)	21+1*2-1	-(21+1*2-1)				
	10	21+2*2-1	-(2 ¹ +2*2 ⁻¹)	21+2*2-1	-(21+2*2-1)	21+2*2-1	-(21+2*2-1)				
	11	21+3*2-1	-(2 ¹ +3*2 ⁻¹)	21+3*2-1	-(21+3*2-1)	21+3*2-1	-(21+3*2-1)				
11	Reserved pattern										

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

Flush to Zero

- Treat all bit patterns with E=0 as 0.0
 - This takes away several representable numbers near zero and lump them all into 0.0
 - For a representation with large M, a large number of representable numbers numbers will be removed.

Flush to Zero

		No-zero		Flush	Flush to Zero		Denormalized	
Е	М	S=0	S=1	S=0	S=1	S=0	S=1	
00	00	2-1	-(2-1)	0	0	0	0	
	01	2-1+1*2-3	-(2-1+1*2-3)	0	0	1*2-2	-1*2-2	
	10	2-1+2*2-3	-(2-1+2*2-3)	0	0	2*2-2	-2*2-2	
	11	2-1+3*2-3	-(2-1+3*2-3)	0	0	3*2-2	-3*2-2	
01	00	20	-(2 ⁰)	20	-(2 ⁰)	20	-(2 ⁰)	
	01	20+1*2-2	-(20+1*2-2)	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	
	10	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	$-(2^0+2^{*2^{-2}})$	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	
	11	20+3*2-2	-(20+3*2-2)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	
10	00	21	-(2 ¹)	21	-(2 ¹)	21	-(21)	
-	01	21+1*2-1	-(21+1*2-1)	21+1*2-1	-(2 ¹ +1*2 ⁻¹)	21+1*2-1	-(21+1*2-1)	
	10	21+2*2-1	-(21+2*2-1)	21+2*2-1	-(21+2*2-1)	21+2*2-1	-(21+2*2-1)	
	11	21+3*2-1	-(21+3*2-1)	21+3*2-1	-(2 ¹ +3*2 ⁻¹)	21+3*2-1	-(21+3*2-1)	
ng Havid	Kirk / NIVII	I and Wen-moi V		Reserved pa	ttern	1	1	

Denormalized Numbers

- The actual method adopted by the IEEE standard is called denromalized numbers or gradual underflow.
 - The method relaxes the normalization requirement for numbers very close to 0.
 - whenever E=0, the mantissa is no longer assumed to be of the form 1.XX. Rather, it is assumed to be 0.XX. In general, if the n-bit exponent is 0, the value is

• $0.M * 2^{-2^{(n-1)}} + 2$

Denormalization

		N	o-zero	Flush	to Zero	Denor	malized	
Е	М	S=0	S=1	S=0	S=1	S=0	S=1	
00	00	2-1	-(2-1)	0	0	0	0	
	01	2-1+1*2-3	-(2 ⁻¹ +1*2 ⁻³)	0	0	1*2-2	-1*2-2	
	10	2-1+2*2-3	-(2-1+2*2-3)	0	0	2*2-2	-2*2-2	
	11	2-1+3*2-3	-(2-1+3*2-3)	0	0	3*2-2	-3*2-2	
01	00	20	-(20)	20	-(2 ⁰)	20	-(2 ⁰)	
	01	20+1*2-2	-(20+1*2-2)	20+1*2-2	-(2 ⁰ +1*2 ⁻²)	20+1*2-2	$-(2^0+1*2^{-2})$	
	10	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	-(2 ⁰ +2*2 ⁻²)	20+2*2-2	$-(2^0+2*2^{-2})$	
	11	20+3*2-2	-(20+3*2-2)	20+3*2-2	-(2 ⁰ +3*2 ⁻²)	20+3*2-2	$-(2^0+3*2^{-2})$	
10	00	21	-(21)	21	-(21)	21	-(21)	
	01	21+1*2-1	-(21+1*2-1)	21+1*2-1	-(21+1*2-1)	21+1*2-1	-(21+1*2-1)	
	10	21+2*2-1	-(21+2*2-1)	21+2*2-1	$-(2^1+2^*2^{-1})$	21+2*2-1	$-(2^1+2^*2^{-1})$	
	11	21+3*2-1	-(21+3*2-1)	21+3*2-1	-(21+3*2-1)	21+3*2-1	$-(2^1+3*2^{-1})$	
© 2009 Havid	Reserved pattern 13							

Recorded for the Virtual School of Computational Science and Engineering

Arithmetic Instruction Throughput

- int and float add, shift, min, max and float mul, mad (fma on Fermi)
 - Compute 1.x 4 cycles per warp
 - Compute 2.0 1 cycle per warp
 - int multiply (*) is by default 32-bit
 - requires multiple instructions on compute 1.x
 - Only 1 cycle on compute 2.x
 - Can Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int multiply
 - But don't on compute 2.x maps to multiple instructions
- Integer divide and modulo are expensive
 - Compiler will convert literal power-of-2 divides to shifts
 - Be explicit in cases where compiler can't tell that divisor is a power of
 2!
 - Useful trick: foo % n == foo & (n-1) if n is a power of 2

Arithmetic Instruction Throughput

- Reciprocal, reciprocal square root, sin/cos, log, exp
 - Compute 1.x 16 cycles per warp
 - Compute $2 \cdot x 8$ cycles per warp
 - These are the versions prefixed with "___"
 - Examples:__rcp(), __sin(), __exp()
- Other functions are combinations of the above
 y / x == rcp(x) * y == 20 cycles per warp (1.x)
 - sqrt(x) = rcp(rsqrt(x)) = 32 cycles per warp (1.x)

Runtime Math Library

- There are two types of runtime math operations
 - __func(): direct mapping to hardware ISA
 - Fast but low accuracy (see prog. guide for details)
 - Examples: _____sin(x), ___exp(x), ___pow(x,y)
 - func() : compile to multiple instructions
 - Slower but higher accuracy for any x
 - Examples: sin(x), exp(x), pow(x,y)
- The -use_fast_math compiler option forces every func() to compile to __func()

Make your program float-safe!

- Compute 1.3 and beyond have double precision support
 - Double precision will have additional performance cost
 - Careless use of double or undeclared types may run more slowly
- Important to be float-safe (be explicit whenever you want single precision) to avoid using double precision where it is not needed
 - Add 'f' specifier on float literals:
 - foo = bar * 0.123; // double assumed
 - foo = bar * 0.123f; // float explicit
 - Use float version of standard library functions
 - foo = sin(bar); // double assumed
 - foo = sinf(bar); // single precision explicit

Deviations from IEEE-754

- Addition and Multiplication are IEEE 754 compliant
 - Maximum 0.5 ulp (units in the least place) error
- However, often combined into multiply-add (FMAD)
 - Intermediate result is truncated
- Combine to IEEE FMA in compute 2.x
- Division
 - 2 ulp error on compute 1.x
 - Fully compliant for 2.x
- Denormalized numbers are supported in compute 2.x and beyond
- No mechanism to detect floating-point exceptions

Conclusion