
1

VSCSE summer school - short course

Introduction to CUDA

Lecture 7
Floating point precision

Joshua A. Anderson

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

2

Objective

•  To understand the fundamentals of floating-point
representation

•  To know the IEEE-754 Floating Point Standard
•  CUDA Floating-point speed, accuracy and precision

–  Deviations from IEEE-754
–  Accuracy of device runtime functions
–  -fastmath compiler option
–  Future performance considerations

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

3

GPU Floating Point Features
CUDA SSE IBM Altivec Cell SPE

Precision IEEE 754 IEEE 754 IEEE 754 IEEE 754

Rounding modes for
FADD and FMUL

All 4 IEEE, round to
nearest, zero, inf, -inf

All 4 IEEE, round to
nearest, zero, inf, -inf Round to nearest only Round to zero/

truncate only

Denormal handling
1.x - Flush to zero
2.0 - Supported

Supported,
1000’s of cycles

Supported,
1000’s of cycles Flush to zero

NaN support Yes Yes Yes No

Overflow and Infinity
support

Yes, only clamps to
max norm Yes Yes No, infinity

Flags No Yes Yes Some

Square root Software Hardware Software only Software only

Division Software Hardware Software only Software only

Reciprocal estimate
accuracy 24 bit 12 bit 12 bit 12 bit

Reciprocal sqrt
estimate accuracy 23 bit 12 bit 12 bit 12 bit

log2(x) and 2^x
estimates accuracy 23 bit No 12 bit No

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

4

What is IEEE floating-point format?

•  A floating point binary number consists of three parts:
–  sign (S), exponent (E), and mantissa (M).
–  Each (S, E, M) pattern uniquely identifies a floating point number.

•  For each bit pattern, its IEEE floating-point value is derived as:

–  value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

•  The interpretation of S is simple: S=0 results in a positive
number and S=1 a negative number.

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

5

Normalized Representation

•  Specifying that 1.0B ≤ M < 10.0B makes the mantissa
value for each floating point number unique.
–  For example, the only one mantissa value allowed for 0.5D

is M =1.0
•  0.5D = 1.0B * 2-1

–  Neither 10.0B * 2 -2 nor 0.1B * 2 0 qualifies

•  Because all mantissa values are of the form 1.XX…,
one can omit the “1.” part in the representation.
–  The mantissa value of 0.5D in a 2-bit mantissa is 00, which

is derived by omitting “1.” from 1.00.

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

6

Exponent Representation

•  In an n-bits exponent
representation, 2n-1-1 is
added to its 2's complement
representation to form its
excess representation.
–  See Table for a 3-bit exponent

representation
•  A simple unsigned integer

comparator can be used to
compare the magnitude of
two FP numbers

•  Symmetric range for +/-
exponents (111 reserved)

2’s complement Actual decimal Excess-3

000 0 011

001 1 100

010 2 101

011 3 110

100 (reserved
pattern)

111

101 -3 000

110 -2 001

111 -1 010

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

7

A simple, hypothetical 5-bit FP format

•  Assume 1-bit S, 2-bit E, and
2-bit M
–  0.5D = 1.00B * 2-1
–  0.5D = 0 00 00, where S = 0,

E = 00, and M = (1.)00

2’s complement Actual decimal Excess-1

00 0 01

01 1 10

10 (reserved pattern) 11

11 -1 00

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

8

Representable Numbers

•  The representable numbers
of a given format is the set
of all numbers that can be
exactly represented in the
format.

•  See Table for representable
numbers of an unsigned 3-
bit integer format

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7
0 7 1 4 2 3 5 6 -1 9 8

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

9

Representable Numbers of a 5-bit
Hypothetical IEEE Format

0

No-zero Abrupt underflow Gradual underflow
E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2
10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2
11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern

Cannot represent
Zero!

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

10

Flush to Zero

•  Treat all bit patterns with E=0 as 0.0
–  This takes away several representable numbers near zero

and lump them all into 0.0
–  For a representation with large M, a large number of

representable numbers numbers will be removed. 0

1 2 3 4 0

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

11

Flush to Zero

0

No-zero Flush to Zero Denormalized
E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2
10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2
11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern © 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

12

Denormalized Numbers

•  The actual method adopted by the IEEE standard is
called denromalized numbers or gradual underflow.
–  The method relaxes the normalization requirement for

numbers very close to 0.
–  whenever E=0, the mantissa is no longer assumed to be of

the form 1.XX. Rather, it is assumed to be 0.XX. In general,
if the n-bit exponent is 0, the value is

•  0.M * 2 - 2 ^(n-1) + 2

0 1 2 3

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

13

Denormalization

0

No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2
10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2
11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

11 Reserved pattern © 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

14

Arithmetic Instruction Throughput
•  int and float add, shift, min, max and float mul, mad (fma on

Fermi)
–  Compute 1.x - 4 cycles per warp
–  Compute 2.0 – 1 cycle per warp

–  int multiply (*) is by default 32-bit
•  requires multiple instructions on compute 1.x
•  Only 1 cycle on compute 2.x

–  Can Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int
multiply

•  But don’t on compute 2.x – maps to multiple instructions

•  Integer divide and modulo are expensive
–  Compiler will convert literal power-of-2 divides to shifts
–  Be explicit in cases where compiler can’t tell that divisor is a power of

2!
–  Useful trick: foo % n == foo & (n-1) if n is a power of 2

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

15

Arithmetic Instruction Throughput

•  Reciprocal, reciprocal square root, sin/cos, log, exp
–  Compute 1.x - 16 cycles per warp
–  Compute 2.x – 8 cycles per warp
–  These are the versions prefixed with “__”
–  Examples:__rcp(), __sin(), __exp()

•  Other functions are combinations of the above
–  y / x == rcp(x) * y == 20 cycles per warp (1.x)
–  sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp (1.x)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

16

Runtime Math Library

•  There are two types of runtime math operations
–  __func(): direct mapping to hardware ISA

•  Fast but low accuracy (see prog. guide for details)
•  Examples: __sin(x), __exp(x), __pow(x,y)

–  func() : compile to multiple instructions
•  Slower but higher accuracy for any x
•  Examples: sin(x), exp(x), pow(x,y)

•  The -use_fast_math compiler option forces every
func() to compile to __func()

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

17

Make your program float-safe!
•  Compute 1.3 and beyond have double precision support

–  Double precision will have additional performance cost
–  Careless use of double or undeclared types may run more slowly

•  Important to be float-safe (be explicit whenever you want
single precision) to avoid using double precision where it is
not needed
–  Add ‘f’ specifier on float literals:

•  foo = bar * 0.123; // double assumed
•  foo = bar * 0.123f; // float explicit

–  Use float version of standard library functions
•  foo = sin(bar); // double assumed
•  foo = sinf(bar); // single precision explicit

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

18

Deviations from IEEE-754

•  Addition and Multiplication are IEEE 754 compliant
–  Maximum 0.5 ulp (units in the least place) error

•  However, often combined into multiply-add (FMAD)
–  Intermediate result is truncated

•  Combine to IEEE FMA in compute 2.x
•  Division

–  2 ulp error on compute 1.x
–  Fully compliant for 2.x

•  Denormalized numbers are supported in compute 2.x
and beyond

•  No mechanism to detect floating-point exceptions
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

19

Conclusion

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

