VSCSE summer school - short course

Introduction to CUDA

Lecture 7Floating point precision

Joshua A. Anderson

Objective

- To understand the fundamentals of floating-point representation
- \bullet To know the IEEE-754 Floating Point Standard
- • CUDA Floating-point speed, accuracy and precision
	- Deviations from IEEE-754
	- –Accuracy of device runtime functions
	- –-fastmath compiler option
	- –Future performance considerations

GPU Floating Point Features

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Recorded for the Virtual School of Computational Science and Engineering

What is IEEE floating-point format?

- • A floating point binary number consists of three parts:
	- $-$ sign (S), exponent (E), and mantissa (M).
	- Each (S, E, M) pattern uniquely identifies a floating point number.
- \bullet For each bit pattern, its IEEE floating-point value is derived as:

 $-$ value = $(-1)^8 * M * \{2^E\}$, where $1.0 \le M < 10.0_B$

•The interpretation of S is simple: S=0 results in a positive number and $S=1$ a negative number.

Normalized Representation

- Specifying that $1.0_B \leq M < 10.0_B$ makes the mantissa value for each floating point number unique.
	- – $-$ For example, the only one mantissa value allowed for $0.5^{}_{\rm D}$ is $M = 1.0$
		- $0.5_D = 1.0_B * 2⁻¹$
	- Neither $10.0_B * 2^{-2}$ nor $0.1_B * 2^0$ qualifies
- Because all mantissa values are of the form $1.XX...$, one can omit the "1." part in the representation.
	- The mantissa value of 0.5_D in a 2-bit mantissa is 00, which is derived by omitting "1." from 1.00.

Exponent Representation

- In an n-bits exponent representation, $2^{n-1}-1$ is added to its 2's complement representation to form its excess representation.
	- See Table for a 3-bit exponent representation
- A simple unsigned integer comparator can be used to compare the magnitude of two FP numbers
- Symmetric range for $+/$ exponents (111 reserved)

A simple, hypothetical 5-bit FP format

 \bullet Assume 1-bit S, 2-bit E, and 2-bit M

$$
- 0.5D = 1.00B * 2-1
$$

 $-0.5_D = 0 00 00$, where S = 0, $E = 00$, and $M = (1, 000)$

Representable Numbers

- The representable numbers of a given format is the set of all numbers that can be exactly represented in the format.
- See Table for representable numbers of an unsigned 3 bit integer format

89

0 7 1 4 2 3 5 6 -1

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Recorded for the Virtual School of Computational Science and Engineering

Flush to Zero

- Treat all bit patterns with E=0 as 0.0
	- – This takes away several representable numbers near zero and lump them all into 0.0
	- –– For a representation with large M, a large number of representable numbers numbers will be removed.

Flush to Zero

Recorded for the Virtual School of Computational Science and Engineering

Denormalized Numbers

- The actual method adopted by the IEEE standard is called denromalized numbers or gradual underflow.
	- – The method relaxes the normalization requirement for numbers very close to 0.
	- – $-$ whenever E=0, the mantissa is no longer assumed to be of the form 1.XX. Rather, it is assumed to be 0.XX. In general, if the n-bit exponent is 0, the value is

• 0.M $*$ 2 $-$ 2 $\binom{n-1}{1}$ + 2

Denormalization

Recorded for the Virtual School of Computational Science and Engineering

Arithmetic Instruction Throughput

- • int and float add, shift, min, max and float mul, mad (fma on Fermi)
	- –Compute 1.x - 4 cycles per warp
	- –Compute 2.0 – 1 cycle per warp
	- int multiply (*) is by default 32-bit
		- •requires multiple instructions on compute 1.x
		- \bullet Only 1 cycle on compute 2.x
	- –Can Use $\text{mul24()}/\text{mul24()}$ intrinsics for 4-cycle 24-bit int multiply
		- •But don't on compute $2.x$ – maps to multiple instructions
- • Integer divide and modulo are expensive
	- –Compiler will convert literal power-of-2 divides to shifts
	- – Be explicit in cases where compiler can't tell that divisor is a power of 2!
	- –Useful trick: foo % n == foo & $(n-1)$ if n is a power of 2

Arithmetic Instruction Throughput

- \bullet Reciprocal, reciprocal square root, sin/cos, log, exp
	- Compute 1.x 16 cycles per warp
	- Compute $2.x 8$ cycles per warp
	- These are the versions prefixed with "__"
	- Examples: $_{\text{rcp}}(0, \underline{\hspace{1cm}} \sin(0), \underline{\hspace{1cm}} \exp(0))$
- • Other functions are combinations of the above $-y / x == rep(x) * y == 20 cycles per warp (1.x)$
	- $sqrt(x) = rcp(rsqrt(x)) == 32$ cycles per warp $(1.x)$

Runtime Math Library

- \bullet There are two types of runtime math operations
	- –__func(): direct mapping to hardware ISA
		- •Fast but low accuracy (see prog. guide for details)
		- •Examples: $\sin(x)$, $\exp(x)$, $\exp(x)$ y)
	- – func() : compile to multiple instructions
		- •Slower but higher accuracy for any x
		- •Examples: $sin(x)$, $exp(x)$, $pow(x,y)$
- • The -use_fast_math compiler option forces every func() to compile to __func()

Make your program float-safe!

- • Compute 1.3 and beyond have double precision support
	- Double precision will have additional performance cost
	- Careless use of double or undeclared types may run more slowly
- • Important to be float-safe (be explicit whenever you want single precision) to avoid using double precision where it is not needed
	- Add 'f' specifier on float literals:
		- foo = $bar * 0.123i$ // double assumed
		- foo = bar * 0.123f; // float explicit
	- Use float version of standard library functions
		- foo = $sin(bar)$; // double assumed
		- foo = sinf(bar); // single precision explicit

Deviations from IEEE-754

- • Addition and Multiplication are IEEE 754 compliant
	- –Maximum 0.5 ulp (units in the least place) error
- • However, often combined into multiply-add (FMAD)
	- Intermediate result is truncated
- •Combine to IEEE FMA in compute 2.x
- \bullet Division
	- –2 ulp error on compute 1.x
	- –Fully compliant for 2.x
- • Denormalized numbers are supported in compute 2.x and beyond
- •No mechanism to detect floating-point exceptions

Conclusion