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Objective 

•  To understand the fundamentals of floating-point 
representation 

•  To know the IEEE-754 Floating Point Standard 
•  CUDA Floating-point speed, accuracy and precision 

–  Deviations from IEEE-754 
–  Accuracy of device runtime functions  
–  -fastmath compiler option 
–  Future performance considerations 
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GPU Floating Point Features 
CUDA SSE IBM Altivec Cell SPE 

Precision IEEE 754 IEEE 754 IEEE 754 IEEE 754 

Rounding modes for 
FADD and FMUL 

All 4 IEEE, round to 
nearest, zero, inf, -inf 

All 4 IEEE, round to 
nearest, zero, inf, -inf Round to nearest only Round to zero/

truncate only 

Denormal handling 
1.x  - Flush to zero 
2.0  - Supported 

Supported, 
1000’s of cycles 

Supported, 
1000’s of cycles Flush to zero 

NaN support Yes Yes Yes No 

Overflow and Infinity 
support 

Yes, only clamps to 
max norm Yes Yes No, infinity 

Flags  No Yes Yes Some 

Square root   Software Hardware Software only Software only 

Division   Software Hardware Software only Software only 

Reciprocal estimate 
accuracy 24 bit 12 bit 12 bit 12 bit 

Reciprocal sqrt 
estimate accuracy 23 bit 12 bit 12 bit 12 bit 

log2(x) and 2^x 
estimates accuracy 23 bit No 12 bit No 
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What is IEEE floating-point format? 

•  A floating point binary number consists of three parts:  
–  sign (S), exponent (E), and mantissa (M).  
–  Each (S, E, M) pattern uniquely identifies a floating point number.  

•  For each bit pattern, its IEEE floating-point value is derived as: 

–  value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B 

•  The interpretation of S is simple: S=0 results in a positive 
number and S=1 a negative number.  
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Normalized Representation 

•  Specifying that 1.0B ≤ M < 10.0B makes the mantissa 
value for each floating point number unique.  
–  For example, the only one mantissa value allowed for 0.5D 

is M =1.0 
•  0.5D  = 1.0B * 2-1 

–  Neither 10.0B * 2 -2  nor  0.1B * 2 0  qualifies 

•  Because all mantissa values are of the form 1.XX…, 
one can omit the “1.” part in the representation.   
–  The mantissa value of 0.5D in a 2-bit mantissa is 00, which 

is derived by omitting “1.” from 1.00. 
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Exponent Representation 

•  In an n-bits exponent 
representation, 2n-1-1 is 
added to its 2's complement 
representation to form its 
excess representation.  
–  See Table for a 3-bit exponent 

representation 
•  A simple unsigned integer 

comparator can be used to 
compare the magnitude of 
two FP numbers 

•  Symmetric range for +/- 
exponents (111 reserved) 

2’s complement Actual decimal Excess-3 

000 0 011 

001 1 100 

010 2 101 

011 3 110 

100 (reserved 
pattern) 

111 

101 -3 000 

110 -2 001 

111 -1 010 
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A simple, hypothetical 5-bit FP format 

•  Assume 1-bit S, 2-bit E, and 
2-bit M 
–  0.5D  = 1.00B * 2-1 
–  0.5D = 0 00 00,  where S = 0, 

E = 00, and M = (1.)00  

2’s complement Actual decimal Excess-1 

00 0 01 

01 1 10 

10 (reserved pattern) 11 

11 -1 00 
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Representable Numbers 

•  The representable numbers 
of a given format is the set 
of all numbers that can be 
exactly represented in the 
format.  

•  See Table for representable 
numbers of an unsigned 3-
bit integer format 

000 0 

001 1 

010 2 

011 3 

100 4 

101 5 

110 6 

111 7 
0 7 1 4 2 3 5 6 -1 9 8 
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Representable Numbers of a 5-bit 
Hypothetical IEEE Format 

0 

No-zero Abrupt underflow Gradual underflow 
E M S=0 S=1 S=0 S=1 S=0 S=1 
00 00 2-1 -(2-1) 0 0 0 0 

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2 
10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2 
11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2 

01 00 20 -(20) 20 -(20) 20 -(20) 
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 

10 00 21 -(21) 21 -(21) 21 -(21) 
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 

11 Reserved pattern 

Cannot represent 
Zero!
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Flush to Zero 

•  Treat all bit patterns with E=0 as 0.0 
–  This takes away several representable numbers near zero 

and lump them all into 0.0 
–  For a representation with large M, a large number of 

representable numbers numbers will be removed. 0 

1 2 3 4 0
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Flush to Zero 

0 

No-zero Flush to Zero Denormalized 
E M S=0 S=1 S=0 S=1 S=0 S=1 
00 00 2-1 -(2-1) 0 0 0 0 

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2 
10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2 
11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2 

01 00 20 -(20) 20 -(20) 20 -(20) 
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 

10 00 21 -(21) 21 -(21) 21 -(21) 
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 
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Denormalized Numbers 

•  The actual method adopted by the IEEE standard is 
called denromalized numbers or gradual underflow. 
–  The method relaxes the normalization requirement for 

numbers very close to 0.  
–  whenever E=0, the mantissa is no longer assumed to be of 

the form 1.XX. Rather, it is assumed to be 0.XX. In general, 
if the n-bit exponent is 0, the value is 

•  0.M * 2 - 2 ^(n-1) + 2 

0 1 2 3 
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Denormalization 

0 

No-zero Flush to Zero Denormalized 

E M S=0 S=1 S=0 S=1 S=0 S=1 
00 00 2-1 -(2-1) 0 0 0 0 

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2 
10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2 
11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2 

01 00 20 -(20) 20 -(20) 20 -(20) 
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 
10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 

10 00 21 -(21) 21 -(21) 21 -(21) 
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 
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Arithmetic Instruction Throughput 
•  int and float add, shift, min, max and float mul, mad (fma on 

Fermi) 
–  Compute 1.x - 4 cycles per warp 
–  Compute 2.0 – 1 cycle per warp 

–  int multiply (*) is by default 32-bit 
•  requires multiple instructions  on compute 1.x 
•  Only 1 cycle on compute 2.x 

–  Can Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int 
multiply 

•  But don’t on compute 2.x – maps to multiple instructions 

•  Integer divide and modulo are expensive 
–  Compiler will convert literal power-of-2 divides to shifts 
–  Be explicit in cases where compiler can’t tell that divisor is a power of 

2! 
–  Useful trick: foo % n == foo & (n-1) if n is a power of 2 
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Arithmetic Instruction Throughput 

•  Reciprocal, reciprocal square root, sin/cos, log, exp 
–  Compute 1.x - 16 cycles per warp 
–  Compute 2.x – 8 cycles per warp 
–  These are the versions prefixed with “__” 
–  Examples:__rcp(), __sin(), __exp() 

•  Other functions are combinations of the above 
–  y / x == rcp(x) * y == 20 cycles per warp (1.x) 
–  sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp (1.x) 
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Runtime Math Library 

•  There are two types of runtime math operations 
–  __func(): direct mapping to hardware ISA 

•  Fast but low accuracy (see prog. guide for details) 
•  Examples: __sin(x), __exp(x), __pow(x,y) 

–  func() : compile to multiple instructions 
•  Slower but higher accuracy for any x 
•  Examples: sin(x), exp(x), pow(x,y) 

•  The -use_fast_math compiler option forces every 
func() to compile to __func() 
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Make your program float-safe! 
•  Compute 1.3 and beyond have double precision support 

–  Double precision will have additional performance cost 
–  Careless use of double or undeclared types may run more slowly 

•  Important to be float-safe (be explicit whenever you want 
single precision) to avoid using double precision where it is 
not needed 
–  Add ‘f’ specifier on float literals: 

•  foo = bar * 0.123;   // double assumed  
•  foo = bar * 0.123f;  // float explicit 

–  Use float version of standard library functions 
•  foo = sin(bar);   // double assumed  
•  foo = sinf(bar);  // single precision explicit 
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Deviations from IEEE-754 

•  Addition and Multiplication are IEEE 754 compliant 
–  Maximum 0.5 ulp (units in the least place) error 

•  However, often combined into multiply-add (FMAD) 
–  Intermediate result is truncated 

•  Combine to IEEE FMA in compute 2.x 
•  Division  

–  2 ulp error on compute 1.x 
–  Fully compliant for 2.x 

•  Denormalized numbers are supported in compute 2.x 
and beyond 

•  No mechanism to detect floating-point exceptions 
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Conclusion 
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