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Objective 

•  Putting the CUDA performance knowledge to work  
–  Plausible strategies may or may not lead to performance 

enhancement 
–  Different constraints dominate in different application 

situations 
–  Case studies help to establish intuition, idioms and ideas 

•  Algorithm patterns that can result in both better 
efficiency as well as better HW utilization 

This lecture covers useful strategies for tuning 
CUDA application performance on many-core 

processors.
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How thread blocks are partitioned 

•  Thread blocks are partitioned into warps 
–  Thread IDs within a warp are consecutive and increasing 
–  Warp 0 starts with Thread ID 0 

•  Partitioning is always the same 
–  Thus you can use this knowledge in control flow  
–  However, the exact size of warps may change from generation to 

generation 
–  (Covered next) 

•  However, DO NOT rely on any ordering between warps 
–  If there are any dependencies between threads, you must 

__syncthreads() to get correct results 
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Control Flow Instructions 
•  Main performance concern with branching is divergence 

–  Threads within a single warp take different paths 
–  Different execution paths are serialized in G80 

•  The control paths taken by the threads in a warp are traversed one at a 
time until there is no more. 

•  A common case: avoid divergence when branch condition is a 
function of thread ID 
–  Example with divergence:  

•  If (threadIdx.x > 2) { } 
•  This creates two different control paths for threads in a block 
•  Branch granularity < warp size; threads 0, 1 and 2 follow different path 

than the rest of the threads in the first warp 
–  Example without divergence: 

•  If (threadIdx.x / WARP_SIZE > 2) { } 
•  Also creates two different control paths for threads in a block 
•  Branch granularity is a whole multiple of warp size; all threads in any 

given warp follow the same path 
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Parallel Reduction 

•  Given an array of values, “reduce” them to a single 
value in parallel 

•  Examples  
–  sum reduction: sum of all values in the array 
–  Max reduction: maximum of all values in the array 

•  Typically parallel implementation: 
–  Recursively halve # threads, add two values per thread 
–  Takes log(n) steps for n elements, requires n/2 threads 
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A Vector Reduction Example 

•  Assume an in-place reduction using shared memory 
–  The original vector is in device global memory 
–  The shared memory used to hold a partial sum vector 
–  Each iteration brings the partial sum vector closer to the 

final sum 
–  The final solution will be in element 0 
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A simple implementation 
•  Assume we have already loaded array into 

__shared__ float partialSum[] 

unsigned int t = threadIdx.x; 
for (unsigned int stride = 1;  
   stride < blockDim.x;  stride *= 2)  

{ 
  __syncthreads(); 
  if (t % (2*stride) == 0) 
   partialSum[t] += partialSum[t+stride]; 

} 
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Vector Reduction with Branch Divergence 
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Some Observations 

•  In each iterations, two control flow paths will be sequentially 
traversed for each warp 
–  Threads that perform addition and threads that do not 
–  Threads that do not perform addition may cost extra cycles depending 

on the implementation of divergence 

•  No more than half of threads will be executing at any time 
–  All odd index threads are disabled right from the beginning! 
–  On average, less than ¼ of the threads will be activated for all warps 

over time. 
–  After the 5th iteration, entire warps in each block will be disabled, poor 

resource utilization but no divergence. 
•  This can go on for a while, up to 4 more iterations (512/32=16= 24), where 

each iteration only has one thread activated until all warps retire  
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Shortcomings of the implementation 
•  Assume we have already loaded array into 

__shared__ float partialSum[] 

unsigned int t = threadIdx.x; 
for (unsigned int stride = 1;  
   stride < blockDim.x;  stride *= 2)  

{ 
  __syncthreads(); 
  if (t % (2*stride) == 0) 
   partialSum[t] += partialSum[t+stride]; 

} 

BAD: Divergence 
due to interleaved 
branch decisions 
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A better implementation 
•  Assume we have already loaded array into 

__shared__ float partialSum[] 

unsigned int t = threadIdx.x; 
for (unsigned int stride = blockDim.x;  
   stride > 1;  stride >> 1)  

{ 
  __syncthreads(); 
  if (t < stride) 
   partialSum[t] += partialSum[t+stride]; 

} 
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Thread 0

No Divergence until < 16 sub-sums  
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Memory Coalescing 

•  When accessing global memory, peak performance 
utilization occurs when all threads in a Warp access 
continuous memory locations. 
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Memory Access Pattern 
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Tiled Multiply 
•  Make sure that tiles are all loaded 

in vertical patters from the global 
memory 

•  Md data can then be accessed from 
shared memory in horizontal 
direction 
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Tiling Size Effects 

•  For good bandwidth utilization, accesses should be aligned and 
consist of 16 contiguous words 

•  Tile size 16X16 minimal required to achieve full coalescing 
–  Both reduction of global memory accesses and more efficient execution 

of the accesses 
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Programmer View of Register File 

•  There are 8192 registers in 
each SM in G80 
–  This is an implementation 

decision, not part of CUDA 
–  Registers are dynamically 

partitioned across all Blocks 
assigned to the SM 

–  Once assigned to a Block, the 
register is NOT accessible by 
threads in other Blocks 

–  Each thread in the same Block 
only access registers assigned 
to itself 

4 blocks 3 blocks
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Matrix Multiplication Example 
•  If each Block has 16X16 threads and each thread uses 

10 registers, how many thread can run on each SM? 
–  Each Block requires 10*256 = 2560 registers 
–  8192 = 3 * 2560 + change 
–  So, three blocks can run on an SM as far as registers are 

concerned 
•  How about if each thread increases the use of registers 

by 1? 
–  Each  Block now requires 11*256 = 2816 registers 
–  8192 < 2816 *3 
–  Only two Blocks can run on an SM, 1/3 reduction of thread-

level parallelism (TLP) 
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More on Dynamic Partitioning 

•  Dynamic partitioning of SM resources gives more 
flexibility to compilers/programmers 
–  One can run a smaller number of threads that require many 

registers each or a large number of threads that require few 
registers each  

•  This allows for finer grain threading than traditional CPU threading 
models. 

–  The compiler can tradeoff between instruction-level 
parallelism and thread level parallelism 
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ILP vs. TLP Example 

•  Assume that a kernel has 256-thread Blocks, 4 independent 
instructions for each global memory load in the thread 
program, and each thread uses 10 registers, global loads have 
200 cycles  
–  3 Blocks can run on each SM 

•  If a compiler can use one more register to change the 
dependence pattern so that 8 independent instructions exist for 
each global memory load 
–  Only two can run on each SM 
–  However, one only needs 200/(8*4) = 7 Warps to tolerate the memory 

latency 
–  Two Blocks have 16 Warps. The performance can be actually higher! 
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Resource Allocation Example 

Increase in per-thread performance, but fewer threads: 
Lower overall performance in this case??? 

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering



25 

Md 

Nd 

Pd 

Pdsub 

TILE_WIDTH 

WIDTH WIDTH 

TILE_WIDTH TILE_WIDTH 

bx 

tx 
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1 

2

1

0

T
IL

E
_W

ID
T

H
 

T
IL

E
_W

ID
T

H
 

T
IL

E
_W

ID
T

H
E

 

W
ID

T
H

 
W

ID
T

H
 

Tiled Multiply 
•  Each block computes one square sub-matrix 

Pdsub of size TILE_WIDTH 

•  Each thread computes one element of Pdsub 

•  Reduced loads from global memory (Md) to 
shared memory 

•  Reduced instruction overhead 
–  More work done in each iteration 

Pdsub 
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Prefetching 
•  One could double buffer the computation, getting 

better instruction mix within each thread 
–  This is classic software pipelining in ILP compilers 

Loop {

Load current tile to shared 
memory

__syncthreads()

Compute current tile

__syncthreads()
}

Load next tile from global memory

Loop {
Deposit current tile to shared memory
__syncthreads()

Load next tile from global memory

Compute current tile

__syncthreads()
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Prefetch 
•  Deposit blue tile from register into 

shared memory 
•  Syncthreads 
•  Load orange tile into register 
•  Compute Blue tile 
•  Deposit orange tile into shared 

memory 
•  …. 

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering



28 

Instruction Mix Considerations 
for (int k = 0; k < BLOCK_SIZE; ++k) 
    Pvalue += Ms[ty][k] * Ns[k][tx]; 

There are very few mul/add between branches 
and address calculation.  

Loop unrolling can help. 

Pvalue += Ms[ty][k] * Ns[k][tx] + … 
              Ms[ty][k+15] * Ns[k+15][tx]; 
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Unrolling 

Removal of branch instructions and address calculations 

Does this use 
more registers? 
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How Close Are We to Best Performance? 

•  Investigated applications with many optimizations 
•  Exhaustive optimization space search 

–  Applied many different, controllable optimizations 
–  Parameterized code by hand 

•  Hand-optimized code is deficient 
–  Generally >15% from the best configuration 
–  Trapped at local maxima 
–  Often non-intuitive mix of optimizations 
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Matrix Multiplication Space 

50% Performance Increase 
Over Hand-Optimized Version 
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Major G80 Performance Detractors 

•  Long-latency operations 
– Avoid stalls by executing other threads 

•  Stalls and bubbles in the pipeline 
– Barrier synchronization 
– Branch divergence 

•  Shared resource saturation 
– Global memory bandwidth 
– Local memory capacity 
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