VSCSE summer school - short course

Introduction to CUDA

Lecture 6Practical Performance Tuning

Joshua A. Anderson

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

Objective

- • Putting the CUDA performance knowledge to work
	- – Plausible strategies may or may not lead to performance enhancement
	- – Different constraints dominate in different application situations
	- –Case studies help to establish intuition, idioms and ideas
- • Algorithm patterns that can result in both better efficiency as well as better HW utilization

This lecture covers useful strategies for tuning CUDA application performance on many-core processors.

How thread blocks are partitioned

- • Thread blocks are partitioned into warps
	- Thread IDs within a warp are consecutive and increasing
	- Warp 0 starts with Thread ID 0
- \bullet Partitioning is always the same
	- Thus you can use this knowledge in control flow
	- However, the exact size of warps may change from generation to generation
	- (Covered next)
- • **However, DO NOT rely on any ordering between warps**
	- If there are any dependencies between threads, you must __syncthreads() to get correct results

Control Flow Instructions

- • Main performance concern with branching is divergence
	- Threads within a single warp take different paths
	- Different execution paths are serialized in G80
		- • The control paths taken by the threads in a warp are traversed one at a time until there is no more.
- • A common case: avoid divergence when branch condition is a function of thread ID
	- Example with divergence:
		- •If $(threadIdx.x > 2) {\{ \} }$
		- This creates two different control paths for threads in a block
		- • Branch granularity < warp size; threads 0, 1 and 2 follow different path than the rest of the threads in the first warp
	- Example without divergence:
		- •If (threadIdx.x / WARP_SIZE > 2) $\{ \}$
		- •Also creates two different control paths for threads in a block
		- • Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path

Parallel Reduction

- \bullet Given an array of values, "reduce" them to a single value in parallel
- \bullet Examples
	- –sum reduction: sum of all values in the array
	- –Max reduction: maximum of all values in the array
- • Typically parallel implementation:
	- –Recursively halve # threads, add two values per thread
	- –Takes log(n) steps for n elements, requires n/2 threads

A Vector Reduction Example

- Assume an in-place reduction using shared memory
	- –The original vector is in device global memory
	- –The shared memory used to hold a partial sum vector
	- –– Each iteration brings the partial sum vector closer to the final sum
	- The final solution will be in element 0

A simple implementation

• Assume we have already loaded array into **__shared__ float partialSum[]**

```
unsigned int t = threadIdx.x; 
for (unsigned int stride = 1; 
     stride < blockDim.x; stride *= 2) 
{ 
     __syncthreads(); 
   if (t % (2*stride) == 0) 
     partialSum[t] += partialSum[t+stride]; 
}
```
Vector Reduction with Branch Divergence

Recorded for the Virtual School of Computational Science and Engineering

Some Observations

- In each iterations, two control flow paths will be sequentially traversed for each warp
	- Threads that perform addition and threads that do not
	- Threads that do not perform addition may cost extra cycles depending on the implementation of divergence
- \bullet No more than half of threads will be executing at any time
	- All odd index threads are disabled right from the beginning!
	- On average, less than ¼ of the threads will be activated for all warps over time.
	- $-$ After the 5th iteration, entire warps in each block will be disabled, poor resource utilization but no divergence.
		- This can go on for a while, up to 4 more iterations $(512/32=16=2^4)$, where each iteration only has one thread activated until all warps retire

Shortcomings of the implementation

• Assume we have already loaded array into **__shared__ float partialSum[]**

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

A better implementation

• Assume we have already loaded array into **__shared__ float partialSum[]**

```
unsigned int t = threadIdx.x; 
for (unsigned int stride = blockDim.x; 
     stride > 1; stride >> 1) 
{ 
     __syncthreads(); 
   if (t < stride) 
     partialSum[t] += partialSum[t+stride]; 
}
```
No Divergence until < 16 sub-sums

Thread 0 Thread 1

Thread 14Thread 15

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

Memory Coalescing

• When accessing global memory, peak performance utilization occurs when all threads in a Warp access continuous memory locations.

Memory Layout of a Matrix in C

Access direction in Kernel code

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

Memory Layout of a Matrix in C

^{© 2009} David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

Memory Access Pattern

Recorded for the Virtual School of Computational Science and Engineering

Tiled Multiply

Md

10

TILE_WIDTH

WIDTH

- • Make sure that tiles are all loaded in vertical patters from the global memory
- • Md data can then be accessed from shared memory in horizontal direction

by $\frac{1}{1}$ ty $\frac{2}{1}$

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

2

1

0

Tiling Size Effects

- \bullet For good bandwidth utilization, accesses should be aligned and consist of 16 contiguous words
- \bullet Tile size 16X16 minimal required to achieve full coalescing
	- Both reduction of global memory accesses and more efficient execution of the accesses

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu Recorded for the Virtual School of Computational Science and Engineering

Programmer View of Register File

- There are 8192 registers in each SM in G80
	- This is an implementation decision, not part of CUDA
	- Registers are dynamically partitioned across all Blocks assigned to the SM
	- Once assigned to a Block, the register is NOT accessible by threads in other Blocks
	- Each thread in the same Block only access registers assigned to itself

Matrix Multiplication Example

- If each Block has 16X16 threads and each thread uses 10 registers, how many thread can run on each SM?
	- –- Each Block requires $10*256 = 2560$ registers
	- 8192 = **3** * 2560 + change
	- –– So, three blocks can run on an SM as far as registers are concerned
- How about if each thread increases the use of registers by 1?
	- –- Each Block now requires $11*256 = 2816$ registers
	- $-8192 < 2816 *3$
	- – Only two Blocks can run on an SM, 1/3 reduction of threadlevel parallelism (TLP)

More on Dynamic Partitioning

- Dynamic partitioning of SM resources gives more flexibility to compilers/programmers
	- – One can run a smaller number of threads that require many registers each or a large number of threads that require few registers each
		- This allows for finer grain threading than traditional CPU threading models.
	- – The compiler can tradeoff between instruction-level parallelism and thread level parallelism

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent instructions for each global memory load in the thread program, and each thread uses 10 registers, global loads have 200 cycles

– 3 Blocks can run on each SM

- If a compiler can use one more register to change the dependence pattern so that 8 independent instructions exist for each global memory load
	- Only two can run on each SM
	- $-$ However, one only needs $200/(8*4) = 7$ Warps to tolerate the memory latency
	- Two Blocks have 16 Warps. The performance can be actually higher!

Tiled Multiply

Md

0

TILE_WIDTH-1

- • Each block computes one square sub-matrix Pd_{sub} of size TILE_WIDTH
- •Each thread computes one element of Pd_{sub}
- • Reduced loads from global memory (Md) to shared memory
- •Reduced instruction overhead

by $\frac{1}{1}$ ty $\frac{1}{2}$

Recorded for the Virtual School of Computational Science and Engineering

2

1

0

^{© 2009} David Kirk/NVIDIA and Wen-mei W. Hwu

Prefetching

• One could double buffer the computation, getting better instruction mix within each thread

–This is classic software pipelining in ILP compilers

Prefetch

WIDTH

- • Deposit blue tile from register into shared memory
- •Syncthreads

•

….

- •Load orange tile into register
- •Compute Blue tile
- **Md**• Deposit orange tile into shared memory

by $\frac{1}{1}$ ty $\frac{2}{1}$

10

TILE_WIDTH

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Recorded for the Virtual School of Computational Science and Engineering

2

1

0

Instruction Mix Considerations

```
for (int k = 0; k < BLOCK_SIZE; ++k) 
     Pvalue += Ms[ty][k] * Ns[k][tx];
```
There are very few mul/add between branches and address calculation.

Loop unrolling can help.

```
Pvalue += Ms[ty][k] * Ns[k][tx] + … 
               Ms[ty][k+15] * Ns[k+15][tx];
```
Unrolling

Removal of branch instructions and address calculations

How Close Are We to Best Performance?

- Investigated applications with many optimizations
- Exhaustive optimization space search
	- –Applied many different, controllable optimizations
	- –Parameterized code by hand
- Hand-optimized code is deficient
	- – $-$ Generally $>15\%$ from the best configuration
	- –– Trapped at local maxima
	- –Often non-intuitive mix of optimizations

Matrix Multiplication Space

Major G80 Performance Detractors

- Long-latency operations
	- –Avoid stalls by executing other threads
- Stalls and bubbles in the pipeline
	- Barrier synchronization
	- –Branch divergence
- Shared resource saturation
	- Global memory bandwidth
	- –Local memory capacity