
1

VSCSE summer school - short course

Introduction to CUDA

Lecture 6
Practical Performance Tuning

Joshua A. Anderson

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

2

Objective

•  Putting the CUDA performance knowledge to work
–  Plausible strategies may or may not lead to performance

enhancement
–  Different constraints dominate in different application

situations
–  Case studies help to establish intuition, idioms and ideas

•  Algorithm patterns that can result in both better
efficiency as well as better HW utilization

This lecture covers useful strategies for tuning
CUDA application performance on many-core

processors.
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

3

How thread blocks are partitioned

•  Thread blocks are partitioned into warps
–  Thread IDs within a warp are consecutive and increasing
–  Warp 0 starts with Thread ID 0

•  Partitioning is always the same
–  Thus you can use this knowledge in control flow
–  However, the exact size of warps may change from generation to

generation
–  (Covered next)

•  However, DO NOT rely on any ordering between warps
–  If there are any dependencies between threads, you must

__syncthreads() to get correct results

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

4

Control Flow Instructions
•  Main performance concern with branching is divergence

–  Threads within a single warp take different paths
–  Different execution paths are serialized in G80

•  The control paths taken by the threads in a warp are traversed one at a
time until there is no more.

•  A common case: avoid divergence when branch condition is a
function of thread ID
–  Example with divergence:

•  If (threadIdx.x > 2) { }
•  This creates two different control paths for threads in a block
•  Branch granularity < warp size; threads 0, 1 and 2 follow different path

than the rest of the threads in the first warp
–  Example without divergence:

•  If (threadIdx.x / WARP_SIZE > 2) { }
•  Also creates two different control paths for threads in a block
•  Branch granularity is a whole multiple of warp size; all threads in any

given warp follow the same path

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

5

Parallel Reduction

•  Given an array of values, “reduce” them to a single
value in parallel

•  Examples
–  sum reduction: sum of all values in the array
–  Max reduction: maximum of all values in the array

•  Typically parallel implementation:
–  Recursively halve # threads, add two values per thread
–  Takes log(n) steps for n elements, requires n/2 threads

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

6

A Vector Reduction Example

•  Assume an in-place reduction using shared memory
–  The original vector is in device global memory
–  The shared memory used to hold a partial sum vector
–  Each iteration brings the partial sum vector closer to the

final sum
–  The final solution will be in element 0

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

7

A simple implementation
•  Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;
 stride < blockDim.x; stride *= 2)

{
 __syncthreads();
 if (t % (2*stride) == 0)
 partialSum[t] += partialSum[t+stride];

}
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

8

Vector Reduction with Branch Divergence

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

9

Some Observations

•  In each iterations, two control flow paths will be sequentially
traversed for each warp
–  Threads that perform addition and threads that do not
–  Threads that do not perform addition may cost extra cycles depending

on the implementation of divergence

•  No more than half of threads will be executing at any time
–  All odd index threads are disabled right from the beginning!
–  On average, less than ¼ of the threads will be activated for all warps

over time.
–  After the 5th iteration, entire warps in each block will be disabled, poor

resource utilization but no divergence.
•  This can go on for a while, up to 4 more iterations (512/32=16= 24), where

each iteration only has one thread activated until all warps retire

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

10

Shortcomings of the implementation
•  Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;
 stride < blockDim.x; stride *= 2)

{
 __syncthreads();
 if (t % (2*stride) == 0)
 partialSum[t] += partialSum[t+stride];

}

BAD: Divergence
due to interleaved
branch decisions

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

11

A better implementation
•  Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x;
 stride > 1; stride >> 1)

{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];

}
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

12

Thread 0

No Divergence until < 16 sub-sums

0 1 2 3 … 13 1514 181716 19

0+16 15+311

3

4

Thread 1 Thread 2 Thread 14Thread 15

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

13

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

14

Memory Coalescing

•  When accessing global memory, peak performance
utilization occurs when all threads in a Warp access
continuous memory locations.

Md Nd

W
ID

T
H

WIDTH

Thread 1
Thread 2

Not coalesced coalesced

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

15

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel code

…

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

16

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel code

…

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

17

Memory Access Pattern
Md Nd

W
ID

T
H

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

18

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Tiled Multiply
•  Make sure that tiles are all loaded

in vertical patters from the global
memory

•  Md data can then be accessed from
shared memory in horizontal
direction

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

19

Tiling Size Effects

•  For good bandwidth utilization, accesses should be aligned and
consist of 16 contiguous words

•  Tile size 16X16 minimal required to achieve full coalescing
–  Both reduction of global memory accesses and more efficient execution

of the accesses

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

20

Programmer View of Register File

•  There are 8192 registers in
each SM in G80
–  This is an implementation

decision, not part of CUDA
–  Registers are dynamically

partitioned across all Blocks
assigned to the SM

–  Once assigned to a Block, the
register is NOT accessible by
threads in other Blocks

–  Each thread in the same Block
only access registers assigned
to itself

4 blocks 3 blocks

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

21

Matrix Multiplication Example
•  If each Block has 16X16 threads and each thread uses

10 registers, how many thread can run on each SM?
–  Each Block requires 10*256 = 2560 registers
–  8192 = 3 * 2560 + change
–  So, three blocks can run on an SM as far as registers are

concerned
•  How about if each thread increases the use of registers

by 1?
–  Each Block now requires 11*256 = 2816 registers
–  8192 < 2816 *3
–  Only two Blocks can run on an SM, 1/3 reduction of thread-

level parallelism (TLP)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

22

More on Dynamic Partitioning

•  Dynamic partitioning of SM resources gives more
flexibility to compilers/programmers
–  One can run a smaller number of threads that require many

registers each or a large number of threads that require few
registers each

•  This allows for finer grain threading than traditional CPU threading
models.

–  The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

23

ILP vs. TLP Example

•  Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global loads have
200 cycles
–  3 Blocks can run on each SM

•  If a compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist for
each global memory load
–  Only two can run on each SM
–  However, one only needs 200/(8*4) = 7 Warps to tolerate the memory

latency
–  Two Blocks have 16 Warps. The performance can be actually higher!

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

24

Resource Allocation Example

Increase in per-thread performance, but fewer threads:
Lower overall performance in this case???

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

25

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Tiled Multiply
•  Each block computes one square sub-matrix

Pdsub of size TILE_WIDTH

•  Each thread computes one element of Pdsub

•  Reduced loads from global memory (Md) to
shared memory

•  Reduced instruction overhead
–  More work done in each iteration

Pdsub

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

26

Prefetching
•  One could double buffer the computation, getting

better instruction mix within each thread
–  This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared
memory

__syncthreads()

Compute current tile

__syncthreads()
}

Load next tile from global memory

Loop {
Deposit current tile to shared memory
__syncthreads()

Load next tile from global memory

Compute current tile

__syncthreads()
}© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Recorded for the Virtual School of Computational Science and Engineering

27

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Prefetch
•  Deposit blue tile from register into

shared memory
•  Syncthreads
•  Load orange tile into register
•  Compute Blue tile
•  Deposit orange tile into shared

memory
•  ….

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

28

Instruction Mix Considerations
for (int k = 0; k < BLOCK_SIZE; ++k)
 Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches
and address calculation.

Loop unrolling can help.

Pvalue += Ms[ty][k] * Ns[k][tx] + …
 Ms[ty][k+15] * Ns[k+15][tx];

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

29

Unrolling

Removal of branch instructions and address calculations

Does this use
more registers?

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

30

How Close Are We to Best Performance?

•  Investigated applications with many optimizations
•  Exhaustive optimization space search

–  Applied many different, controllable optimizations
–  Parameterized code by hand

•  Hand-optimized code is deficient
–  Generally >15% from the best configuration
–  Trapped at local maxima
–  Often non-intuitive mix of optimizations

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

31

Matrix Multiplication Space

50% Performance Increase
Over Hand-Optimized Version

C
an

no
t r

un

Optimizations

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

32

Major G80 Performance Detractors

•  Long-latency operations
– Avoid stalls by executing other threads

•  Stalls and bubbles in the pipeline
– Barrier synchronization
– Branch divergence

•  Shared resource saturation
– Global memory bandwidth
– Local memory capacity

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

