
1

VSCSE summer school - short course

Introduction to CUDA

Lecture 5
Basic Performance Considerations

Joshua A. Anderson

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

*Based on the NVIDIA CUDA Best Practice Guide

2

Objective

•  To learn the basic practices needed to obtain the best
performing CUDA code possible.

•  To understand the hardware specifications and how
they relate to designing optimal algorithms.

•  To learn how to model and optimize whole-
application performance

•  To understand proper methods to benchmark CUDA
code

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

3

Overview

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

CPU
~10 GFLOPS

4 threads

GPU
~1000 GFLOPS
30,000 threads Host memory

4-16 GB

Device memory
0.5 – 6 GB

triple channel DDR3
30 GB/s

GDDR5
177 GB/s

PCIe
4-6 GB/s

4

Host / device differences

•  Host
–  Multicore – capable of several threads of simultaneous

execution
–  Thread context switching is expensive

•  Device
–  Manycore – smallest unit of execution is a warp of 32

threads
–  Over 30,000 threads needed to fully saturate the device
–  Thread context switching is free

•  Host and device have separate RAM

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

5

Memory copies

•  PCI-express is extremely slow (4-6 GB/s) compared
to both host and device memory
–  use cudaHostAlloc() to attain 4-6 GB/s

•  Minimize HtoD and DtoH mem copies
•  Must include memcpy times in an analysis of the

expected runtime
•  Keep data on the device as long as possible
•  Executing a non-optimal computation on the GPU

may still be faster than copying back to the CPU,
performing the operation fast and copying the results
back

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

6

Maximum possible performance benefit

•  Amdahl's law
–  P is the fraction of the application

parallelized
–  Not really directly applicable

to GPUs. N processors are not N times faster than 1
processor

–  Simplify by taking the limit as N tends toward infinity

–  Example: P=90% => S = 10. Yes, only 10!
–  Best possible application of development time is to

increase P
© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

7

Measuring performance

•  cudaprof (more in lecture 8) is great for fine tuning
individual kernels

•  It does little to help you understand how much wall
time is spent in various portions of an application

•  Measure wall-clock time using
–  gettimeofday() in linux/mac
–  GetSystemTimeAsFileTime() in windows

•  Kernel launches are asynchronous, call
cudaThreadSynchronize() before every wall
clock time measurement

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

8

Overview

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

CPU
~10 GFLOPS

4 threads

GPU
~1000 GFLOPS
30,000 threads Host memory

4-16 GB

Device memory
0.5 – 6 GB

triple channel DDR3

30 GB/s

GDDR5

177 GB/s

PCIe

4-6 GB/s

9

Bandwidth

•  The single most important performance consideration
•  Always keep bandwidth in mind with every change

made to CUDA code
•  Know the theoretical peak bandwidth of the various

data links
•  Count bytes read/written and compare to the

theoretical peak
–  Example: Each thread reads 100 floats and writes 2.

100,000 threads execute in 1ms.
–  (100+2)*sizeof(float)*100000 / 1e-3 = 38 GB/s

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

10

Bandwidth - continued

•  Utilize the various memory spaces to your advantage
–  Constant, texture, shared, global

•  When values are used multiple times in a thread, read
once into a register and use multiple times
–  int val = d_data[idx];
–  a += val;
–  b -= val;

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

11

Bandwidth - continued
•  Coalesce memory reads/writes

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering *Images from the NVIDIA CUDA Best Practice Guide

12

When to stop optimizing

•  Compare actual memory bandwidth to theoretical
(see previous slide)

•  Compare actual floating point operation throughput
to theoretical (more info in next lecture)

•  Determine whether you are bandwidth or
computation bound and optimize that portion until
you attain near peak levels

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

13

(often) lower priority considerations

•  Shared memory bank conflicts
•  Divergent warps
•  Occupancy
•  though, in some kernels these can be important –

examples in the next lecture

© 2010 Joshua A. Anderson
Recorded for the Virtual School of Computational Science and Engineering

Conclusion

14

