
1
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

VSCSE summer school - short course

Introduction to CUDA

Lecture 4
CUDA Memory Model

Joshua A. Anderson

2

G80 Implementation of CUDA Memories

•  Each thread can:
–  Read/write per-thread

registers
–  Read/write per-thread

local memory
–  Read/write per-block

shared memory
–  Read/write per-grid

global memory
–  Read/only per-grid

constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

3

CUDA Variable Type Qualifiers

•  __device__ is implied when used with
__shared__, or __constant__

•  Automatic variables without any qualifier reside in
a register
–  Except arrays that reside in local memory

Variable declaration Memory Scope Lifetime
Automatic assignment by compiler local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

4

Where to Declare Variables?

Can host access it?

Outside of
any Function

In the kernel

yes no
global
constant

register (automatic)
shared
local

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

5

Variable Type Restrictions

•  Pointers typically only point to memory allocated
or declared in global memory:
–  Allocated in the host and passed to the kernel:
 __global__ void KernelFunc(float* ptr)

–  Obtained as the address of a global variable:
 float* ptr = &GlobalVar;
- Or obtained from cudaMalloc()

•  Can also point into shared memory
•  Pointers into constant memory are possible on Fermi

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

6

A Common Programming Strategy
•  Global memory resides in device memory (DRAM)

- much slower access than shared memory
•  So, a profitable way of performing computation on

the device is to tile data to take advantage of fast
shared memory:
–  Partition data into subsets that fit into shared memory
–  Handle each data subset with one thread block by:

•  Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism

•  Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any data
element

•  Copying results from shared memory to global memory
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

7

A Common Programming Strategy
(Cont.)

•  Constant memory also resides in device memory
(DRAM) - much slower access than shared
memory
–  But… cached!
–  Highly efficient access for read-only, broadcast, data

•  Carefully divide data according to access patterns
–  R/Only constant memory (very fast if in cache)
–  R/W shared within Block shared memory (very fast)
–  R/W within each thread registers (very fast)
–  R/W inputs/results global memory (very slow)

For texture memory usage, see courses.ece.uiuc.edu/ece498/al.
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

8

Matrix Multiplication using
Shared Memory

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

9

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

 Pvalue += Md[Row][k] * Nd[k][Col];

Pd[Row][Col] = Pvalue;

}
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

10

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on G80?

•  All threads access global memory
for their input matrix elements

–  Two memory accesses (8 bytes)
per floating point multiply-add

–  4B/s of memory bandwidth/
FLOPS

–  4*346.5 = 1386 GB/s required to
achieve peak FLOP rating

–  86.4 GB/s limits the code at
21.6 GFLOPS

•  The actual code runs at about 15
GFLOPS

•  Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

11

Idea: Use Shared Memory to reuse
global memory data

•  Each input element is
read by WIDTH
threads.

•  Load each element into
Shared Memory and
have several threads
use the local version to
reduce the memory
bandwidth
–  Tiled algorithms

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

12

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Tiled Multiply
•  Break up the execution of the

kernel into phases so that the
data accesses in each phase is
focused on one subset (tile) of
Md and Nd

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

13

Pd1,0

A Small Example

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

14

Every M and N Element is used exactly
twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0
P0,1

thread0,1
P1,1

thread1,1
M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access
order

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

15

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Breaking Md and Nd into Tiles

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

16

Each phase uses one tile from Md and
one from Nd

Step 4 Step 5 Step 6

T0,0 Md0,0
↓
Mds0,0

Nd0,0

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Md2,0
↓
Mds0,0

Nd0,2

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

T1,0 Md1,0

↓
Mds1,0

Nd1,0

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Md3,0
↓
Mds1,0

Nd1,2

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

T0,1 Md0,1

↓
Mds0,1

Nd0,1

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Md2,1
↓
Mds0,1

Nd0,3

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

T1,1 Md1,1

↓
Mds1,1

Nd1,1

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Md3,1
↓
Mds1,1

Nd1,3

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Phase 1 Phase 2

time
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

17

First-order Size Considerations in G80

•  Each thread block should have many threads
–  TILE_WIDTH of 16 gives 16*16 = 256 threads

•  There should be many thread blocks
–  A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

•  Each thread block perform 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.
–  Memory bandwidth no longer a limiting factor

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

18

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width / TILE_WIDTH,

 Width / TILE_WIDTH);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

19

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[tx][ty] = Md[(m*TILE_WIDTH + tx)*Width+Row];

10.  Nds[tx][ty] = Nd[Col*Width+(m*TILE_WIDTH + ty)];

11.  __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[tx][k] * Nds[k][ty];

14. __synchthreads();

15.}

16. Pd[Row*Width+Col] = Pvalue;

}
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

20

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Tiled Multiply
•  Each block computes one

square sub-matrix Pdsub of size
TILE_WIDTH

•  Each thread computes one
element of Pdsub

m

kbx

by

k

m

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

21

G80 Shared Memory and Threading
•  Each SM in G80 has 16KB shared memory

–  SM size is implementation dependent!
–  For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB

of shared memory.
–  Can potentially have up to 8 Thread Blocks actively executing

•  This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

–  The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB
shared memory usage per thread block, allowing only up to two
thread blocks active at the same time

•  Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16
–  The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6

GFLOPS!

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

22

Tiling Size Effects

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

23

 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 

Summary- Typical Structure of a
CUDA Program

repeat
as
needed

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

