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G80 Implementation of  CUDA Memories 

•  Each thread can: 
–  Read/write per-thread 

registers 
–  Read/write per-thread 

local memory 
–  Read/write per-block 

shared memory 
–  Read/write per-grid 

global memory 
–  Read/only per-grid 

constant memory 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 
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CUDA Variable Type Qualifiers 

•   __device__ is implied when used with 
__shared__, or  __constant__ 

•  Automatic variables without any qualifier reside in 
a register 
–  Except arrays that reside in local memory 

Variable declaration Memory Scope Lifetime 
Automatic assignment by compiler local thread thread 
__device__ __shared__   int SharedVar; shared block block 
__device__              int GlobalVar; global grid application 
__device__ __constant__ int ConstantVar; constant grid application 
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Where to Declare Variables? 

Can host access it?

Outside of 
any Function

In the kernel

yes no
global
constant

register (automatic)
shared
local
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Variable Type Restrictions 

•  Pointers typically only point to memory allocated 
or declared in global memory: 
–  Allocated in the host and passed to the kernel:  
 __global__ void KernelFunc(float* ptr) 

–  Obtained as the address of a global variable:  
 float* ptr = &GlobalVar; 
- Or obtained from cudaMalloc() 

•  Can also point into shared memory 
•  Pointers into constant memory are possible on Fermi 
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A Common Programming Strategy 
•  Global memory resides in device memory (DRAM) 

- much slower access than shared memory 
•  So, a profitable way of performing computation on 

the device is to tile data to take advantage of fast 
shared memory: 
–  Partition data into subsets that fit into shared memory 
–  Handle each data subset with one thread block by: 

•  Loading the subset from global memory to shared memory, 
using multiple threads to exploit memory-level parallelism 

•  Performing the computation on the subset from shared 
memory; each thread can efficiently multi-pass over any data 
element 

•  Copying results from shared memory to global memory 
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A Common Programming Strategy 
(Cont.) 

•  Constant memory also resides in device memory 
(DRAM) - much slower access than shared 
memory 
–  But… cached! 
–  Highly efficient access for read-only, broadcast, data 

•  Carefully divide data according to access patterns 
–  R/Only  constant memory (very fast if in cache) 
–  R/W shared within Block  shared memory (very fast) 
–  R/W within each thread  registers (very fast) 
–  R/W inputs/results  global memory (very slow) 

For texture memory usage, see courses.ece.uiuc.edu/ece498/al. 
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Matrix Multiplication using  
Shared Memory 
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Revised Matrix Multiplication 
Kernel using Multiple Blocks 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 

    Pvalue += Md[Row][k] * Nd[k][Col]; 

Pd[Row][Col] = Pvalue; 

} 
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Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

How about performance on G80? 

•  All threads access global memory 
for their input matrix elements 

–  Two memory accesses (8 bytes) 
per floating point multiply-add 

–  4B/s of memory bandwidth/
FLOPS 

–  4*346.5 = 1386 GB/s required to 
achieve peak FLOP rating 

–  86.4 GB/s limits the code at 
21.6 GFLOPS 

•  The actual code runs at about 15 
GFLOPS 

•  Need to drastically cut down 
memory accesses to get closer to 
the peak 346.5 GFLOPS 
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Idea: Use Shared Memory to reuse 
global memory data 

•  Each input element is 
read by WIDTH 
threads. 

•  Load each element into 
Shared Memory and 
have several threads 
use the local version to 
reduce the memory 
bandwidth 
–  Tiled algorithms 
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Tiled Multiply 
•  Break up the execution of the 

kernel into phases so that the 
data accesses in each phase is 
focused on one subset (tile) of 
Md and Nd 
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Pd1,0

A Small Example 

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1
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Every M and N Element is used exactly 
twice in generating a 2X2 tile of P 

P0,0 

thread0,0 

P1,0 

thread1,0 
P0,1 

thread0,1 
P1,1 

thread1,1 
M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0 

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1 

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2 

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3 

Access
order

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering



15 

Pd1,0Md2,0
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Breaking Md and Nd into Tiles 
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Each phase uses one tile from Md and 
one from Nd 

Step 4 Step 5 Step 6 

T0,0 Md0,0  
↓ 
Mds0,0 

Nd0,0 

↓  
Nds0,0 

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1 

Md2,0  
↓  
Mds0,0  

Nd0,2 

↓  
Nds0,0 

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1 

T1,0 Md1,0 

↓ 
Mds1,0  

Nd1,0 

↓  
Nds1,0 

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1 

Md3,0  
↓  
Mds1,0  

Nd1,2 

↓  
Nds1,0 

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1 

T0,1 Md0,1 

↓ 
Mds0,1 

Nd0,1 

↓  
Nds0,1 

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1 

Md2,1 
↓  
Mds0,1 

Nd0,3 

↓  
Nds0,1 

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1 

T1,1 Md1,1 

↓ 
Mds1,1 

Nd1,1 

↓  
Nds1,1 

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1 

Md3,1  
↓  
Mds1,1  

Nd1,3 

↓  
Nds1,1 

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1 

Phase 1 Phase 2

time 
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering



17 

First-order Size Considerations in G80 

•  Each thread block should have many threads 
–  TILE_WIDTH of 16 gives 16*16 = 256 threads 

•  There should be many thread blocks 
–  A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks 

•  Each thread block perform 2*256 = 512 float 
loads from global memory for 256 * (2*16) = 
8,192 mul/add operations.  
–  Memory bandwidth no longer a limiting factor 
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CUDA Code – Kernel Execution 
Configuration 

// Setup the execution configuration 

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); 

dim3 dimGrid(Width  / TILE_WIDTH,  

      Width /  TILE_WIDTH); 
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Tiled Matrix Multiplication Kernel 
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 
2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 

3.  int bx = blockIdx.x;  int by = blockIdx.y; 

4.  int tx = threadIdx.x; int ty = threadIdx.y; 

// Identify the row and column of the Pd element to work on 

5.  int Row = by * TILE_WIDTH + ty; 

6.  int Col = bx * TILE_WIDTH + tx; 

7.   float Pvalue = 0; 

// Loop over the Md and Nd tiles required to compute the Pd element 

8.   for (int m = 0; m < Width/TILE_WIDTH; ++m) { 

// Coolaborative loading of Md and Nd tiles into shared memory 
9.    Mds[tx][ty] = Md[(m*TILE_WIDTH + tx)*Width+Row]; 

10.    Nds[tx][ty] = Nd[Col*Width+(m*TILE_WIDTH + ty)]; 

11.    __syncthreads(); 

12.   for (int k = 0; k < TILE_WIDTH; ++k) 
13.    Pvalue += Mds[tx][k] * Nds[k][ty]; 

14.  __synchthreads(); 

15.}  

16.   Pd[Row*Width+Col] = Pvalue; 

} 
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Tiled Multiply 
•  Each block computes one 

square sub-matrix Pdsub of size 
TILE_WIDTH 

•  Each thread computes one 
element of Pdsub 

m

kbx

by

k

m
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G80 Shared Memory and Threading 
•  Each SM in G80 has 16KB shared memory 

–  SM size is implementation dependent! 
–  For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB 

of shared memory.  
–  Can potentially have up to 8 Thread Blocks actively executing  

•  This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 
threads per block) 

–  The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB 
shared memory usage per thread block, allowing only up to two 
thread blocks active at the same time 

•  Using 16x16 tiling, we reduce the accesses to the global 
memory by a factor of 16 
–  The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 

GFLOPS! 
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Tiling Size Effects 
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Summary- Typical Structure of a 
CUDA Program 

repeat
as 
needed
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