

VSCSE summer school - short course

Introduction to CUDA

Lecture 3
CUDA Threading Model

Joshua A. Anderson

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Block IDs and Thread IDs

•  Each thread uses IDs to
decide what data to work on
–  Block ID: 1D or 2D
–  Thread ID: 1D, 2D, or 3D

•  Simplifies memory
addressing when
processing
multidimensional data
–  Image processing
–  Solving PDEs on volumes
–  …

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Matrix Multiplication Using
Multiple Blocks
•  Break-up Pd into tiles
•  Each block calculates one

tile
–  Each thread calculates one

element
–  Block size equal tile size

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

A Small Example

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Pd1,0

A Small Example: Multiplication

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)

 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

}
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

 // Setup the execution configuration
 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Revised Step 5: Kernel Invocation
(Host-side Code)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Thread Block
•  All threads in a block execute the same

kernel program (SPMD)
•  Programmer declares block:

–  Block size 1 to 512 concurrent threads on
G80, G200

–  Up to 1024 on GF100
–  Block shape 1D, 2D, or 3D
–  Block dimensions in threads

•  Threads have thread id numbers within block
–  Thread program uses thread id to select

work and address shared data

•  Threads in the same block share data and
synchronize while doing their share of the
work

•  Threads in different blocks cannot cooperate
–  Each block can execute in any order relative

to other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Transparent Scalability
•  Hardware is free to assigns blocks to any

processor at any time
–  A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks.

time

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

G80 Example: Executing Thread Blocks

•  Threads are assigned to Streaming
Multiprocessors in block granularity
–  Up to 8 blocks to each SM as

resource allows
–  SM in G80 can take up to 768 threads

•  Could be 256 (threads/block) * 3
blocks

•  Or 128 (threads/block) * 6 blocks, etc.

•  Threads run concurrently
–  SM maintains thread/block id #s
–  SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

G80 Example: Thread Scheduling

•  Each Block is executed as 32-
thread Warps
–  An implementation decision,

not part of the CUDA
programming model

–  Warps are scheduling units
in SM

•  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
–  Each Block is divided into

256/32 = 8 Warps
–  There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…Block 1 Warps

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

G80 Example: Thread Scheduling
(Cont.)

•  SM implements zero-overhead warp scheduling
–  At any time, only one of the warps is executed by SM
–  Warps whose next instruction has its operands ready for

consumption are eligible for execution
–  Eligible Warps are selected for execution on a prioritized

scheduling policy
–  All threads in a warp execute the same instruction when selected

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

G80 Block Granularity Considerations
•  For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

–  For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

–  For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

–  For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM! (at least on G80, will fit on GF100)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Some Additional API Features

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Application Programming Interface

•  The API is an extension to the C programming
language

•  It consists of:
–  Language extensions

•  To target portions of the code for execution on the device

–  A runtime library split into:
•  A common component providing built-in vector types and a

subset of the C runtime library in both host and device
codes

•  A host component to control and access one or more
devices from the host

•  A device component providing device-specific functions

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Language Extensions:
Built-in Variables

•  dim3 gridDim;
–  Dimensions of the grid in blocks (gridDim.z

unused)
•  dim3 blockDim;

–  Dimensions of the block in threads
•  dim3 blockIdx;

–  Block index within the grid

•  dim3 threadIdx;
–  Thread index within the block

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Common Runtime Component:
Mathematical Functions

•  pow, sqrt, cbrt, hypot
•  exp, exp2, expm1
•  log, log2, log10, log1p
•  sin, cos, tan, asin, acos, atan, atan2
•  sinh, cosh, tanh, asinh, acosh, atanh
•  ceil, floor, trunc, round
•  Etc.

–  When executed on the host, a given function uses
the C runtime implementation if available

–  These functions are only supported for scalar types,
not vector types

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Device Runtime Component:
Mathematical Functions

•  Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. __sin(x))
–  __pow
–  __log, __log2, __log10
–  __exp
–  __sin, __cos, __tan

•  See the programming guide for detailed error
tolerances

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Host Runtime Component
•  Provides functions to deal with:

–  Device management (including multi-device systems)
–  Memory management
–  Error handling

•  Initializes the first time a runtime function is called

•  A host thread can invoke device code on only one
device
–  Multiple host threads required to run on multiple

devices
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Device Runtime Component:
Synchronization Function

•  void __syncthreads();
•  Synchronizes all threads in a block
•  Once all threads have reached this point,

execution resumes normally
•  Used to avoid RAW / WAR / WAW hazards

when accessing shared or global memory
•  Allowed in conditional constructs only if the

conditional is uniform across the entire thread
block

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Device Runtime Component:
Atomic operations

•  Atomic operations are available on compute 1.1
and newer GPUs
–  atomicAdd
–  atomicSubb
–  atomicMin
–  … See the programming guide for a full list

•  Atomic operations can operate on global
memory or shared memory (compute 1.2+)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

__shared a;
a = a + threadIdx.x tmpreg = load(a)

tmpreg = tmpreg + threadIdx.x
a = store(tmpreg)

Conclusion

