
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

VSCSE summer school - short course

Introduction to CUDA

Lecture 2
CUDA Programming Model

Joshua A. Anderson

Overview

•  CUDA programming model – basic concepts
and data types

•  CUDA application programming interface -
simple examples to illustrate basic concepts and
functionalities

•  Performance features will be covered later

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA – C with no shader limitations!
•  Integrated host+device app C program

–  Serial or modestly parallel parts in host C code
–  Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Devices and Threads
•  A compute device

–  Is a coprocessor to the CPU or host
–  Has its own DRAM (device memory)
–  Runs many threads in parallel
–  Is typically a GPU but can also be another type of parallel

processing device

•  Data-parallel portions of an application are expressed as
device kernels which run on many threads

•  Differences between GPU and CPU threads
–  GPU threads are extremely lightweight

•  Very little creation overhead
–  GPU needs 1000s of threads for full efficiency

•  Multi-core CPU needs only a few

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

•  The future of GPUs is programmable processing
•  So – build the architecture around the processor

GPU - Graphics Mode

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

GF100 CUDA mode
•  Processors execute computing threads
•  New operating mode/HW interface for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache

Load/store Load/store Load/store Load/store Load/store

L2 Cache

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Extends C
•  Declspecs

–  global, device,
shared, constant

•  Keywords
–  threadIdx, blockIdx

•  Intrinsics
–  __syncthreads

•  Runtime API
–  Memory, symbol,

execution
management

•  Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

8

Arrays of Parallel Threads

•  A CUDA kernel is executed by an array of
threads
–  All threads run the same code (SPMD)
–  Each thread has an ID that it uses to compute

memory addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

…
float x = input
[threadID];
float y = func(x);
output[threadID] = y;
…

threadID
Thread Block 0

…
…
float x = input
[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 0

…
float x = input
[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation
•  Divide monolithic thread array into multiple blocks

–  Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

–  Threads in different blocks cannot cooperate

76543210 76543210 76543210

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Block IDs and Thread IDs

•  Each thread uses IDs to decide
what data to work on
–  Block ID: 1D or 2D
–  Thread ID: 1D, 2D, or 3D

•  Simplifies memory
addressing when processing
multidimensional data
–  Image processing
–  Solving PDEs on volumes
–  …

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Memory Model Overview

•  Global memory
–  Main means of

communicating R/W
Data between host and
device

–  Contents visible to all
threads

–  Long latency access

•  We will focus on
global memory for now

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA API Highlights:
Easy and Lightweight

•  The API is an extension to the ANSI C
programming language
 Low learning curve

•  The hardware is designed to enable lightweight
runtime and driver
 High performance

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Device Memory Allocation

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Device Memory Allocation (cont.)

•  Code example:
– Allocate a 64 * 64 single precision float array
– Attach the allocated storage to Md
–  “d” is often used to indicate a device data

structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Host-Device Data Transfer
•  cudaMemcpy() - synchronous

–  memory data transfer
–  Requires four parameters

•  Pointer to destination
•  Pointer to source
•  Number of bytes copied
•  Type of transfer

– Host to Host
– Host to Device
– Device to Host
– Device to Device

•  Asynchronous transfer
–  cudaMemcpyAsync()

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Host-Device Data Transfer
(cont.)

•  Code example:
–  Transfer a 64 * 64 single precision float array
–  M is in host memory and Md is in device memory
–  cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Keywords

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Function Declarations

host host __host__ float HostFunc()
host device __global__ void KernelFunc()

device device __device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

•  __global__ defines a kernel function
–  Must return void

•  __device__ and __host__ can be used
together

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Function Declarations (cont.)

•  __device__ functions cannot have their
address taken

•  For functions executed on the device:
– No recursion
– No static variable declarations inside the

function
– No variable number of arguments

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Calling a Kernel Function – Thread
Creation

•  A kernel function must be called with an
execution configuration:

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared

memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>

(...);
•  Any call to a kernel function is asynchronous –

host can continue processing after the kernel call

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

A Simple Running Example
Matrix Multiplication

•  A simple matrix multiplication example that
illustrates the basic features of memory and
thread management in CUDA programs
–  Leave shared memory usage until later
–  Local, register usage
–  Thread ID usage
–  Memory data transfer API between host and device
–  Assume square matrix for simplicity

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Programming Model: Square
Matrix-Matrix Multiplication Example

•  P = M * N of size WIDTH x WIDTH

•  Without tiling:
–  One thread calculates one element

of P
–  M and N are loaded WIDTH times

from global memory
M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 1: Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i

k

k

j

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
 int size = Width * Width * sizeof(float);
 float* Md, Nd, Pd;
 …
1. // Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);

Step 2: Input Matrix Data Transfer
(Host-side Code)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code – to be shown later
 …

3. // Read P from the device
 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices
 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
 }

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Nd

Md Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

Step 4: Kernel Function (cont.)

 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 5: Kernel Invocation
(Host-side Code)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Only One Thread Block Used
•  One Block of threads compute

matrix Pd
–  Each thread computes one

element of Pd
•  Each thread

–  Loads a row of matrix Md
–  Loads a column of matrix Nd
–  Perform one multiply and

addition for each pair of Md
and Nd elements

–  Compute to off-chip memory
access ratio close to 1:1 (not
very high)

•  Size of matrix limited by the
number of threads allowed in a
thread block

 Grid 1
Block 1

48

Thread
)2, 2(

 WIDTH

Md Pd

Nd

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 7: Handling Arbitrary Sized Square
Matrices

•  Have each 2D thread block to
compute a (TILE_WIDTH)2 sub-
matrix (tile) of the result matrix
–  Each has (TILE_WIDTH)2 threads

•  Generate a 2D Grid of (WIDTH/
TILE_WIDTH)2 blocks

Md

Nd

Pd

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop
around the kernel call for
cases where WIDTH/
TILE_WIDTH is greater
than max grid size (64K)!

TILE_WIDTH

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Conclusion

