VSCSE summer school - short course

Introduction to CUDA

Lecture 2

CUDA Programming Model

Joshua A. Anderson

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Overview

« CUDA programming model — basic concepts
and data types

« CUDA application programming interface -
simple examples to illustrate basic concepts and

functionalities

e Performance features will be covered later

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA — C with no shader limitations!

* Integrated host+device app C program

— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g
Parallel Kernel (device) ;;é > ;}; > || \;,2 ;;é >
KernelA<<< nBlk, nTid >>>(args): || ke || e || s | - - | 5 ;
Serial Code (host) g
Parallel Kernel (device) % W | | I >
! (< < < &
KernelB<<< nBIk, nTid >>>(args);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Devices and Threads

A compute device
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
— Is typically a GPU but can also be another type of parallel
processing device
« Data-parallel portions of an application are expressed as
device kernels which run on many threads

 Differences between GPU and CPU threads

— GPU threads are extremely lightweight
* Very little creation overhead

— GPU needs 1000s of threads for full efficiency
e Multi-core CPU needs only a few

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

GPU - Graphics Mode

 The future of GPUs Is programmable processing
SO0 — build the architecture around the processor

Host

Input Aslsembler J Setup / Rstr / ZCull
Vix Threiad Issue Geom Thread Issue Pixel Thread Issue
% \ \ 4 \
L f|LsPIL| || S
|) 1| ?
|) 1| §
ER|nn| | nn 2
T E
o
e
|_

N | T
d | -

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

GF100 CUDA mode

 Processors execute computing threads

 New operatina mode/HW interface for computing

Host

!

Input Assembler

\ 4 V‘ ‘ V‘
L L Hl N O O
LI Hl N O O
LI Hl N O O
Hl| . HN) | NN O

L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache

[Texture | || || Texture | Q] [{rexture | ||} rexture | | @ rexcure || §|-| | exture | | W |rexture | | [§{ || exture | |

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Extends C

 Declspecs
__device__ fTloat filter[N];

— global, device,
shared, constant __global__ void convolve (float *image) {

__shared__ float region[M];
« Keywords

— threadldx, blockldx region[threadldx] = image[i];
e Intrinsics __syncthreads()
— __syncthreads

image[j] = result;

}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

e Runtime API

— Memory, symbol,
execution
management

Function launch // 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads
— All threads run the same code (SPMD)

— Each thread has an ID that it uses to compute
memory addresses and make control decisions

threadlD |o|1|2|3|4]|5|6]|7

float x = input[threadlD];
float y = func(x);

output[threadlD] = y;

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Thread Blocks: Scalable Cooperation

* Divide monolithic thread array into multiple blocks

— Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

— Threads in different blocks cannot cooperate

Thread Block O Thread Block O Thread Block N - 1

threadlD Ol 1| 2| 3| 4|1 5| 6| 7 Ol 1| 2| 3| 4]5]|6|7 Ol 1| 2| 3] 4|1 5| 6| 7

float x = input
[threadlD];

float x = input float x = input
[threadlD]; [threadlD];
float y = func(x); float y = func(x);

float y = func(x);

output[threadlD] = y; output[threadlD] = y; output[threadID] = y;

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Block IDs and Thread IDs

e Each thread uses IDs to decide et |
what data to work on T en || e || o
— BIOCk ID: 1D or 2D I Block Block . Block

(01 (L1 | (21)

— Thread ID: 1D, 2D, or 3D

.
L
Grid 2
;

o Simplifies memory
addressing when processing !
multidimensional data

— Image processing

— Solving PDEs on volumes

 Block 1)

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Memory Model Overview

e Global memor

— Main means of
communicating RXW

Data between host\and

device

— Contents visible to all
threads

— Long latency access

 We will focus on
global memory for no

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Grid

Host <

Vv

Recorded for the Virtual School of Computational Science and Engineering

Block (0, 0}

|

Block (1, O)

| e

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0))

CUDA API Highlights:
Easy and Lightweight

« The APl Is an extension to the ANSI C
programming language
Low learning curve

 The hardware Is designed to enable lightweight
runtime and driver

High performance

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Device Memory Allocation

» cudaMalloc()

— Allocates object in the =
device Global Memory Block (0, 0) Block (1, 0)
— ReqUireS tWO paramet S Shared Memory Shared Memory

L4 Add reSS Of a pOinter tO Registers ' Registers l Registers ' Registers '
the allocated object ¢ ' ' ’

.] Thread (0, O) Thread (1, 0) = Thread (0, O) Thread (1, 0)
- Size of of allocated object t 1 t t

Global

» cudaFree() oSt Kl

— Frees object from device
Global Memory

 Pointer to freed object

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Device Memory Allocation (cont.)]

e Code example:
— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md
—“d” Is often used to indicate a device data
structure

TILE_WIDTH = 64;
Float* Md
int size = TILE_ WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Host-Device Data Transfer

e cudaMemcpy() - synchronous

— memory data transfer

— Requires four parameters
» Pointer to destination
» Pointer to source

 Number of bytes copied " " F' "
 Type of transfer

— HOSt to HOSt Thread (0, 0) Thread (1, 0) | Thread (0, 0} Thread (1, O}

Grid

Block (O, 0)] Block (1, O)

— Host to Device
— Device to Host
— Device to Device

e Asynchronous transfer
— cudaMemcpyAsync()

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Host-Device Data Transfer
(cont.)

 Code example:

— Transfer a 64 * 64 single precision float array
— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Keywords

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Function Declarations

Executed | Only callable
on the: from the:
__device float DeviceFunc() device device
~_global __ void KernelFunc() device host
__host float HostFunc() T host host
e global defines a kernel function
— Must return void
e device and host can be used

together

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

CUDA Function Declarations (cont.)

e device functions cannot have their
address taken

e For functions executed on the device:
— No recursion

— No static variable declarations inside the
function

— No variable number of arguments

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Calling a Kernel Function — Thread

Creation

« A kernel function must be called with an
execution configuration:

__global void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>
C---);

 Any call to a kernel function is asynchronous —
host can continue processing after the kernel call

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

A Simple Running Example

Matrix M

e A simple matrix multip

Ultiplication

ication example that

illustrates the basic features of memory and
thread management in CUDA programs

— Leave shared memory
— Local, register usage
— Thread ID usage

usage until later

— Memory data transfer API between host and device
— Assume square matrix for simplicity

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu

Recorded for the Virtual School of Computational Science and Engineering

Programming Model: Square
Matrix-Matrix Multiplication Example

e P=M?*N of size WIDTH x WIDTH
e Without tiling:

— One calculates one element
of P

— M and N are loaded WIDTH times
from global memaorv

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Memory Layout of a Matrix in C

MO,l Ml,l M2,1 M3,1
MO,Z Ml,Z MZ,Z MS,Z

MO,S M1,3 M2,3 M3,3

MO,l Ml,l M2,1 M3,1 MO,Z Ml,Z MZ,Z MS,Z M0,3 M1,3 M2,3 M3,3

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 1: Matrix Multiplication
A Simple Host Version in C

/ | Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width) t

{ k
for (inti=0; i< Width; ++i)
for (intj = 0; j < Width; ++j) { : '
double sum = 0; J
for (int k = O0; k < Width; ++k) {
double a = M[i * width + K];
double b = N[k * width + |];
sum+=a?*b;

A/

} A
P[i * Width + j] = sum;
} 1
v
k
© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu) gl ing

Recorded for the Virtual School of Computational Science and Engineering

Step 2: Input Matrix Data Transfer

(Host-side Code)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)]

{

Int size = Width * Width * sizeof(float);
float™ Md, Nd, Pd;

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/l Allocate P on the device
cudaMalloc(&Pd, size);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. |/ / Kernel invocation code — to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

/ | Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 4. Kernel Function

/I Matrix multiplication kernel — per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/[l Pvalue Is used to store the element of the matrix
// that is computed by the thread
float Pvalue = O;

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

}

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k)|{
float Melement = Md[threadldx.y*Width+K];
float Nelement = Nd[k*Width+threadldx.x];
Pvalue += Melement * Nelement;

}

tx

Pd[threadldx.y*Width+threadldx.x] = Pvalue;

k

tx

A/

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu < > <

Recorded for the Virtual School of Computational Science and Engineering

Step 5: Kernel Invocation
(Host-side Code)

I/ Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Only One Thread Block Used

Nd

 One Block of threads compute
matrix Pd
— Each thread computes one
element of Pd
 Each thread
— Loads a row of matrix Md
— Loads a column of matrix Nd

— Perform one multiply and
addition for each pair of Md
and Nd elements

— Compute to off-chip memory
access ratio close to 1:1 (not

very high)
 Size of matrix limited by the D—— >
number of threads allowed in a
thread block Md Pd

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Step 7: Handling Arbitrary Sized Square
Matrices

 Have each 2D thread block to !
compute a (TILE_ WIDTH)? sub-
matrix (tile) of the result matrix

— Each has (TILE_WIDTH)? threads

 Generate a 2D Grid of (WIDTH/
TILE_WIDTH)? blocks

You still need to put a loop by
around the kernel call for TILE._ WIDTH
cases where WIDTH / ty

TILE_WIDTH is greater
than max grid size (64K)! bx |tx

© 2009 David Kirk/NVIDIA and Wen-mei W. Hwu
Recorded for the Virtual School of Computational Science and Engineering

Conclusion

