VSCSE summer school - short course

Introduction to CUDA

Lecture I Introduction to Many-Core Processors

Joshua A. Anderson

© 2010 Joshua A. Anderson Recorded for the Virtual School of Computational Science and Engineering

Modern video games demand copious

processing power.

- **Millions** of pixels
- **Thousands** of calculations per pixel
- One hundred frames per second
- 100's of GFLOPS are needed

2009

Applications using CUDA

http://www.nvidia.com/object/cuda_apps_flash_new.html#

Open source: <u>http://codeblue.umich.edu/hoomd-blue</u>

General purpose Many-particle Dynamics

fully implemented on GPU hardware

© 2010 Joshua A. Anderson Recorded for the Virtual School of Computational Science and Engineering images from <u>http://www.dell.com</u>

Desktop GPU: Cost per performance

Cost	\$330	\$1300	\$500	\$2500
Memory size	I GB	4 GB	I.5 GB	3 - 6 GB
Memory Bandwidth	159 GB/s	102 GB/s	177 GB/s	I 44 GB/s
Peak compute (double)	88.5 GFLOPs	77 GFLOPS	158 GFLOPS	515 GFLOPS
Peak compute (single)	I.062 TFLOPS	933 GFLOPS	I.3 TFLOPS	I.03 TFLOPS
Processor elements	240	240	480	448
	GTX 285	Tesla C1060	GTX 480	Tesla C20X0

Workstation and datacenter GPUs

AC <u>http://iacat.uiuc.edu/resources/cluster/</u>

© 2010 Joshua A. Anderson Recorded for the Virtual School of Computational Science and Engineering

Tesla S1070

= 4x Tesla C1060 + power supply + fans

Large GPU clusters

- Lincoln at NCSA
 - I536 CPU cores
 - 384 Tesla GPUs
 - A TeraGrid resource

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/

- TSUBAME at Tokyo Tech
 - First Tesla equipped cluster on the Top500
- Many more
 - <u>http://www.nvidia.com/</u>
 <u>object/cuda_clusters.html</u>

GPU prehistory (1981 - 1997)

© 2010 Joshua A. Anderson Recorded for the Virtual School of Computational Science and Engineering

1997: 3DFX - the GPU is born

© 2010 Joshua A. Anderson Recorded for the Virtual School of Computational Science and Engineering

GPU performance in recent history

The industry competitors today

- 74.9 million GPUs sold in Q1 2009
- Three big players
- Healthy competition and large demand => GPUs are inexpensive and widely supported

intel®

GPU architecture comparison

Multiprocessor capabilities

Each multiprocessor has:

CUDA cores	32	
Total cache	64 kb	
Registers	32,768	
Floating point	IEEE-754 double	
Number of active threads	1536	

• **thread** - An independent sequence of operations (i.e. add, multiply, load, store, compare, branch...)

 Register - Temporary storage for the inputs and outputs of compute instructions.

© 2010 Joshua A. Anderson

Wait, did you say 1536 active threads !?

Example instruction stream

- Instructions are processed in warps of 32 threads
- any pattern of branches is handled by the hardware
- A multiprocessor is a huge latency hiding engine
- I6,384 registers => no
 overhead swapping contexts
- **SIMT**, not SIMD

warp I	memory load - sleeps
warp 4	multiply
warp 2	add
warp 3	memory load - sleeps
warp 2	subtract
warp I	wakes up - multiply
warp 4	subtract
warp 3	wakes up - subtract
warp I	add

• • •

GPU programming environments

© 2010 Joshua A. Anderson Recorded for the Virtual School of Computational Science and Engineering

General purpose compute

• CUDA

- Program in **C/C++**
- Fortran support is available
- Very easy to learn and use
- Close enough to the hardware to obtain near peak performance
- No limitations on scatter
- Very good documentation and learning material
- OpenCL = CUDA-like programming model for a variety of different hardware platforms

Data-parallel execution model

© 2010 Joshua A. Anderson

CUDA tools

• Compiler: nvcc

- C/C++ compiler with a few special directives for programming the GPU
- **Debugger:** cuda-gdb (*linux*) and nexus (*windows*)
 - Full hardware debugger, capable of setting breakpoints and stepping through code
- **Memory checker:** cuda-memcheck (linux & mac)
- **Profiler:** cudaprof
 - Accesses numerous performance counters on the GPU
- **CUBLAS:** A full BLAS implementation on the GPU
- **CUFFT:** General purpose FFT library that runs on the GPU (API is like FFTW)

Additional resources to learn CUDA

- CUDA programming guide and best practices guide: http://developer.nvidia.com/object/cuda_3_0_downloads.html Read them cover to cover
- CUDA SDK (a set of good examples of CUDA applications
 - <u>http://developer.nvidia.com/object/cuda_sdk_samples.html</u>
- The CUDA Forums:

http://forums.nvidia.com/index.php?showforum=62

• Course at UIUC:

http://courses.ece.illinois.edu/ece498/al/

 Many-core summer school, Virtual School of Computational Science & Engineering:

http://www.greatlakesconsortium.org

• Many more links:

http://www.nvidia.com/object/cuda_education.html

Conclusions

Many-core processors

- Widely available and inexpensive GPUs
- Provide 10-100x performance boosts
- Drastically decrease the time to discovery
- Architecture differs from standard CPUs
- Necessitates a new programming model more on this in the next lectures