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A Comparison of Three Methods for Selecting 
Values of Input Variables in the Analysis of Output 
from a Computer Code 

M. D. McKay and R. J. Beckman 

Los Alamos Scientific Laboratory 
P.O. Box 1663 

Los Alamos, NM 87545 

W. J. Conover 

Department of Mathematics 
Texas Tech University 
Lubbock, TX 79409 

Two types of sampling plans are examined as alternatives to simple random sampling in 
Monte Carlo studies. These plans are shown to be improvements over simple random sampling 
with respect to variance for a class of estimators which includes the sample mean and the 
empirical distribution function. 
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1. INTRODUCTION 

Numerical methods have been used for years to 
provide approximate solutions to fluid flow problems 
that defy analytical solutions because of their com- 
plexity. A mathematical model is constructed to re- 
semble the fluid flow problem, and a computer pro- 
gram (called a "code"), incorporating methods of 
obtaining a numerical solution, is written. Then for 
any selection of input variables X = (X,, * * , XK) an 
output variable Y = h(X) is produced by the com- 
puter code. If the code is accurate the output Y 
resembles what the actual output would be if an 
experiment were performed under the conditions X. 
It is often impractical or impossible to perform such 
an experiment. Moreover, the computer codes are 
sometimes sufficiently complex so that a single set of 
input variables may require several hours of time on 
the fastest computers presently in existence in order 
to produce one output. We should mention that a 
single output Y is usually a graph Y(t) of output as a 
function of time, calculated at discrete time points t, 
to < t < tl. 

When modeling real world phenomena with a com- 
puter code one is often faced with the problem of 
what values to use for the inputs. This difficulty can 
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arise from within the physical process itself when 
system parameters are not constant, but vary in some 
manner about nominal values. We model our uncer- 
tainty about the values of the inputs by treating them 
as random variables. The information desired from 
the code can be obtained from a study of the proba- 
bility distribution of the output Y(t). Consequently, 
we model the "numerical" experiment by Y(t) as an 
unknown transformation h(X) of the inputs X, which 
have a known probability distribution F(x) for x E S. 
Obviously several values of X, say X1, .', XN, must 
be selected as successive inputs sets in order to obtain 
the desired information concerning Y(t). When N 
must be small because of the running time of the 
code, the input variables should be selected with great 
care. 

The next section describes three methods of select- 
ing (sampling) input variables. Sections 3, 4 and 5 are 
devoted to comparing the three methods with respect 
to their performance in an actual computer code. 

The computer code used in this paper was devel- 
oped in the Hydrodynamics Group of the Theoretical 
Division at the Los Alamos Scientific Laboratory, to 
study reactor safety [8]. The computer code is named 
SOLA-PLOOP and is a one-dimensional version of 
another code SOLA [7]. The code was used by us to 
model the blowdown depressurization of a straight 
pipe filled with water at fixed initial temperature and 
pressure. Input variables include: X1, phase change 
rate; X2, drag coefficient for drift velocity; X3, number 
of bubbles per unit volume; and X4, pipe roughness. 
The input variables are assumed to be uniformly 
distributed over given ranges. The output variable is 
pressure as a function of time, where the initial time to 
is the time the pipe ruptures and depressurization 
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initiates, and the final time ti is 20 milliseconds later. 
The pressure is recorded at 0.1 millisecond time inter- 
vals. The code was used repeatedly so that the accu- 
racy and precision of the three sampling methods 
could be compared. 

2. A DESCRIPTION OF THE THREE METHODS USED 
FOR SELECTING THE VALUES OF INPUT VARIABLES 

From the many different methods of selecting the 
values of input variables, we have chosen three that 
have considerable intuitive appeal. These are called 
random sampling, stratified sampling, and Latin hy- 
percube sampling. 

Random Sampling. Let the input values X1, * * , XN 
be a random sample from F(x). This method of sam- 
pling is perhaps the most obvious, and an entire body 
of statistical literature may be used in making infer- 
ences regarding the distribution of Y(t). 

Stratified Sampling. Using stratified sampling, all 
areas of the sample space of X are represented by 
input values. Let the sample space S of X be parti- 
tioned into I disjoint strata St. Let pi = P(X C Si) 
represent the size of Si. Obtain a random sample XiJ,j 
= 1, * * , n from Si. Then of course the ni sum to N. 
If I = 1, we have random sampling over the entire 
sample space. 

Latin Hypercube Sampling. The same reasoning 
that led to stratified sampling, ensuring that all por- 
tions of S were sampled, could lead further. If we 
wish to ensure also that each of the input variables Xk 
has all portions of its distribution represented by 
input values, we can divide the range of each Xk into 
N strata of equal marginal probability 1/N, and 
sample once from each stratum. Let this sample be 
Xkj,j = 1, ..., N. These form the Xk component, k = 
1, * , K, in Xi, i = 1, * , N. The components of the 
various X,A's are matched at random. This method of 
selecting input values is an extension of quota sam- 
pling [13], and can be viewed as a K-dimensional 
extension of Latin square sampling [11]. 

One advantage of the Latin hypercube sample ap- 
pears when the output Y(t) is dominated by only a 
few of the components of X. This method ensures 
that each of those components is represented in a 
fully stratified manner, no matter which components 
might turn out to be important. 

We mention here that the N intervals on the range 
of each component of X combine to form NK cells 
which cover the sample space of X. These cells, which 
are labeled by coordinates corresponding to the inter- 
vals, are used when finding the properties of the 
sampling plan. 

2.1 Estimators 

In the Appendix (Section 8), stratified sampling 
and Latin hypercube sampling are examined and 

compared to random sampling with respect to the 
class of estimators of the form 

N 

T(Y,, , YN)= (1/N) g(Yi), 
it=l 

where g( ) = arbitrary function. 

Ifg(Y) = Y then T represents the sample mean which 
is used to estimate E(Y). If g(Y) = yr we obtain the 
rth sample moment. By letting g(Y) = 1 for Y < y, 0 
otherwise, we obtain the usual empirical distribution 
function at the point y. Our interest is centered 
around these particular statistics. 

Let r denote the expected value of T when the Ye's 
constitute a random sample from the distribution of 
Y = h(X). We show in the Appendix that both strati- 
fied sampling and Latin hypercube sampling yield 
unbiased estimators of r. 

If TR is the estimate of r from a random sample of 
size N, and Ts is the estimate from a stratified sample 
of size N, then Var(Ts) < Var(TR) when the stratified 
plan uses equal probability strata with one sample 
per stratum (all pi = 1/N and nlj = 1). No direct 
means of comparing the variance of the correspond- 
ing estimator from Latin hypercube sampling, TL, to 
Var(Ts) has been found. However, the following the- 
orem, proved in the Appendix, relates the variances 
of TL and TR. 

Theorem. If Y = h(X1, ., XK) is monotonic in 
each of its arguments, and g(Y) is a monotonic func- 
tion of Y, then Var(TL) < Var(TR). 

2.2 The SOLA-PLOOP Example 
The three sampling plans were compared using the 

SOLA-PLOOP computer code with N = 16. First a 
random sample consisting of 16 values of X = (X1, 
X2, X3, X,) was selected, entered as inputs, and 16 
graphs of Y(t) were observed as outputs. These out- 
put values were used in the estimators. 

For the stratified sampling method the range of 
each input variable was divided at the median into 
two parts of equal probability. The combinations of 
ranges thus formed produced 24 = 16 strata Si. One 
observation was obtained at random from each Si as 
input, and the resulting outputs were used to obtain 
the estimates. 

To obtain the Latin hypercube sample the range of 
each input variable Xi was stratified into 16 intervals 
of equal probability, and one observation was drawn 
at random from each interval. These 16 values for the 
4 input variables were matched at random to form 16 
inputs, and thus 16 outputs from the code. 

The entire process of sampling and estimating for 
the three selection methods was repeated 50 times in 
order to get some idea of the accuracies and preci- 
sions involved. The total computer time spent in run- 
ning the SOLA-PLOOP code in this study was 7 
hours on a CDC-6600. Some of the standard devia- 
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tion plots appear to be inconsistent with the theoreti- 
cal results. These occasional discrepancies are be- 
lieved to arise from the non-independence of the 
estimators over time and the small sample sizes. 

3. ESTIMATING THE MEAN 

The goodness of an unbiased estimator of the mean 
can be measured by the size of its variance. For each 
sampling method, the estimator of E(Y(t)) is of the 
form 

N 

Y(t) = (1/N) X Yt(t) 
i=1 
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Ll 

(3.1) 

where 

120-0 - 

100-0 - 

80'0 - 

60-0 - 

40-0 

IRANDOM .................. 

STRAT D .......... 

LATM ---- 

0-0 
I I 

5.0 10 
TIME 

t50 20-0 

FIGURE 1. Estimating the mean: the sample mean of ?R(t), Ys(t), 
and L(t). Y(t) = h(Xi), 

In the case of the stratified sample, the X1 comes 
from stratum Si, Pi = 1/N and n1 = 1. For the Latin 
hypercube sample, the Xi is obtained in the manner 
described earlier. Each of the three estimators YR, Ys, 
and YL is an unbiased estimator of E(Y(t)). The 
variances of the estimators are given in (3.2): 

Var(YR(t)) = (1/N) Var(Y(t)) 
N 

Var(Ys(t)) = Var(YR(t))- (1/N2) X (u - ,)2 
= 1 

Var(YL(t)) = Var(YR(t)) + ((N - 1)/N) 

1/(NK(N - 1)K)) y (A,l - M)(uj - A) 
R 

(3.2) 

where u = E(Y(t)), 

Iji = E(Y(t) I X G Si) in the stratified sample, or 

it = E(Y(t) | X E cell i) in the Latin hypercube 
sample, 

and R means the restricted space of all pairs Au, ,j 
having no cell coordinates in common. 

For the SOLA-PLOOP computer code the means 
and standard deviations, based on 50 observations, 
were computed for the estimators just described. 
Comparative plots of the means are given in Figure 1. 
All of the plots of the means are comparable, demon- 
strating the unbiasedness of the estimators. 

Comparative plots of the standard deviations of 
the estimators are given in Figure 2. The standard 
deviation of Ys(t) is_smaller than that of YR(t) as 
expected. However, YL(t) clearly demonstrates supe- 
riority as an estimator in this example, with a stan- 
dard deviation roughly one-forth that of the random 
sampling estimator. 

N 

S2(t) = (1/N) ~ (Y,(t)- Y(t))2, 
i=l 

(4.1) 

and its expectation is 

E(S2(t)) = Var(Y(t))- Var(Y(t)), (4.2) 

where Y(t) is one of YR(t), Ys(t), or YL(t). 
In the case of the random sample, it is well known 

that N S2R/(N - 1) is an unbiased estimator of the 
variance of Y(t). The bias in the case of the stratified 
sample is unknown. However, because Var(Ys(t)) < 
Var(YR(t)), 

(1 - 1/N) Var(Y(t)) < E(S,2(t)) < Var(Y(t)). (4.3) 
The bias in the Latin hypercube plan is also un- 
known, but for the SOLA-PLOOP example it was 
small. Variances for these estimators were not found. 

Again using the SOLA-PLOOP example, means 
and standard deviations (based on 50 observations) 
were computed. The mean plots are given in Figure 3. 
They indicate that all three estimators are in relative 
agreement concerning the quantities they are estimat- 
ing. In terms of standard deviations of the estimators, 
Figure 4 shows that, although stratified sampling 
yields about the same precision as does random sam- 
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For each sampling method, the form of the estima- 
tor of the variance is 
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FIGURE 2. Estimating the mean: the standard deviation of YR(t), 
Ys(t), and YL(t). 
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FIGURE 3. Estimating the variance: the sample mean of SR2(t), 
Ss2(t), and SL2(t). 

pling, Latin hypercube furnishes a clearly better es- 
timator. 

5. ESTIMATING THE DISTRIBUTION FUNCTION 

The distribution function, D(y, t), of Y(t) = h(X) 
may be estimated by the empirical distribution func- 
tion. The empirical distribution function can be writ- 
ten as 

N 

G(y, t) = (l/N) u(y - Y (t)), 
i=1 

(5.1) 

where u(z) = 1 for z > 0 and is zero otherwise. Since 
equation (5.1) is of the form of the estimators in 
Section 2.1, the expected value of G(y, t) under the 
three sampling plans is the same, and under random 
sampling, the expected value of G(y, t) is D(y, t). 

The variances of the three estimators are given in 
(5.2). Di again refers to either stratum i or cell i, as 
appropriate, and R represents the same restricted 
space as it did in (3.2). 

Var(GR(y, t)) = (1/N) D(y, t)(l - D(y, t)) 

700 80-0 90-0 

PRESSURE 

FIGURE 5. Estimating the CDF: the sample mean of GR(, t), 
Gs(y, t), and GL(Y, t) at t = 1.4. 

Var(Gs(y, t)) = Var(GR(y, t)) 

N 

-(1/N2) (Di(y, t) - D(y, t))2 
=-1 

Var(GL(y, t)) = Var(GR(y, t)) 

+((N - 1)/N 1/NK(N - 1)K) C (Dt'(, t) 
R 

- D(y, t)) * (Dj(y, t)- D(y, t)). (5.2) 

As with the cases of the mean and variance estima- 
tors, the distribution function estimators were com- 
pared for the three sampling plans. Figures 5 and 6 
give the means and standard deviations of the estima- 
tors at t = 1.4 ms. This time point was chosen to 
correspond to the time of maximum variance in the 
distribution of Y(t). Again the estimates obtained 
from a Latin hypercube sample appear to be more 
precise in general than the other two types of esti- 
mates. 
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FIGURE 4. Estimating the variance: the standard deviation of 
SR2(t), Ss2(t), and SL2(t). 
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FIGURE 6. Estimating the CDF: the standard deviation of GR(Y, 
t), Gs(y, t), and GL(Y, t) at t = 1.4. 
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6. DISCUSSION AND CONCLUSIONS 

We have presented three sampling plans and asso- 
ciated estimators of the mean, the variance, and the 
population distribution function of the output of a 
computer code when the inputs are treated as random 
variables. The first method is simple random sam- 

pling. The second method involves stratified sam- 
pling and improves upon the first method. The third 
method is called here Latin hypercube sampling. It is 
an extension of quota sampling [13], and it is a first 
cousin to the "random balance" design discussed by 
Satterthwaite [12], Budne [2], Youden, et al [15], 
Anscombe [1], and to the highly fractionalized facto- 
rial designs discussed by Enrenfeld and Zacks [5, 6], 
Dempster [3, 4], and Zacks [16, 17], and to lattice 
sampling as discussed by Jessen [9]. This third 
method improves upon simple random sampling 
when certain monotonicity conditions hold, and it 
appears to be a good method to use for selecting 
values of input variables. 
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8. APPENDIX 

In the sections that follow we present some general 
results about stratified sampling and Latin hypercube 
sampling in order to make comparisons with simple 
random sampling. We move from the general case of 
stratified sampling to stratified sampling with propor- 
tional allocation, and then to proportional alloca- 
tions with one observation per stratum. We examine 
Latin hypercube sampling for the equal marginal 
probability strata case only. 

8.1 Type I Estimators 

Let X denote a K variate random variable with 
probability density function (pdf) f(x) for x C S. Let 
Y denote a univariate transformation of X given by 
Y = h(X). In the context of this paper we assume 

X - f(x), x E S KNOWNpdf 
Y = h(X) UNKNOWN but observable 

transformation of X. 

The class of estimators to be considered are those of 
the form 

N 

T(u,, , UN)= (1/N) J g(U,), 
t-= 

(8.1) 

where g(. ) is an arbitrary, known function. In partic- 
ular we use g(u) = ur to estimate moments, and g(u) 
= 1 for u > 0, = 0 elsewhere, to estimate the distribu- 
tion function. 

The sampling schemes described in the following 
sections will be compared to random sampling with 
respect to T. The symbol TR denotes T(Y1, .* , YN) 
when the arguments Y,, * * , YN constitute a random 
sample of Y. The mean and variance of TR are de- 
noted by T and 02/N. The statistic T given by (8.1) 
will be evaluated at arguments arising from stratified 
sampling to form Ts, and at arguments arising from 
Latin hypercube sampling to form TL. The associated 
means and variances will be compared to those for 
random sampling. 

8.2 Stratified Sampling 
Let the range space, S, of X be partitioned into I 

disjoint subsets Si of size pi = P(X e St), with 

pt = 1. t=l 

Let Xij, j = 1, *.., nl, be a random sample from 
stratum St. That is, let Xj - iidf(x)/pi,j = 1, . * , ni, 
for x e Si, but with zero density elsewhere. The corre- 
sponding values of Y are denoted by Yj = h(X(j), and 
the strata means and variances of g(Y) are denoted by 

A, = E(g(Yij)) = fg(y)(1/pt)f(x)d 

ai2 = Var(g(Y()) = f(g(y)-t)2(l/pt)f(x)dx. 
s 

It is easy to see that if we use the general form 
I nt 

Ts= ? (pt/ni) g(Yj), 
t=l J=l 

that Ts is an unbaised estimator of r with variance 
given by 

I 

Var(Ts) = ] (p,2/ni)a,2. 
t=1 

(8.2) 

The following results can be found in Tocher [14]. 
Stratified Sampling with Proportional Allocation. If 

the probability sizes, pi, of the strata and the sample 
sizes, ni, are chosen so that ni = piN, proportional 
allocation is achieved. In this case (8.2) becomes 

I 

Var(Ts) = Var(TR) - (/N) "pt(,t-rT)2. (8.3) 
t=1 

Thus, we see that stratified sampling with propor- 
tional allocation offers an improvement over random 
sampling, and that the variance reduction is a func- 
tion of the differences between the strata means A, 
and the overall mean r. 
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Proportional Allocation with One Sample per Stra- 
tum. Any stratified plan which employs subsampling, 
ni > 1, can be improved by further stratification. 
When all ni = 1, (8.3) becomes 

N 

Var(Ts) = Var(TR) - (/N) -)2. (8.4) 
1=1 

8.3 Latin Hypercube Sampling 
In stratified sampling the range space S of X can be 

arbitrarily partitioned to form strata. In Latin hyper- 
cube sampling the partitions are constructed in a 
specific manner using partitions of the ranges of each 
component of X. We will only consider the case 
where the components of X are independent. 

Let the ranges of each of the K components of X be 
partitioned into N intervals of probablitity size 1/N. 
The Cartesian product of these intervals partitions S 
into NK cells each of probability size N-K. Each cell 
can be labeled by a set of K cell coordinates mi =(mil, 
mi2, .' , msK) where mij is the interval number of 
component XJ represented in cell i. A Latin hyper- 
cube sample of size N is obtained from a random 
selection N of the cells m,, * *, mN, with the condi- 
tion that for each j the set {mij}l_N is a permutation 
of the integers 1, .. , N. One random observation 
is made in each cell. The density function of X given 
X e cell i is NKf(X) if x E cell i, zero otherwise. The 
marginal (unconditional) distribution of Yi(t) is eas- 
ily seen to be the same as that for a randomly drawn 
X as follows: 

P(Y < y) = P(Y, < y X X cell q)P(X cell q) 
all oells q 

-= Zcell q NKf(X)d (l/NK) 
h(x) Sy 

- f f(x)dx. 
h(X)<y 

From this we have TL as an unbiased estimator of r. 
To arrive at a form for the variance of TL we 

introduce indicator variables wt, with 

O if cell i is in the sample 
if not. 

The estimator can now be written as 
NK 

TL = (1/N) wfg(Yi), (8.5) 
/=1 

where Y1 = h(X1) and Xl ~ cell i. The variance of TL is 
given by 

NK 

Var(TL) = (1/N2) C Var(wtg(Y1)) 
t=l 

NK NK 

+ (1/N2) ?c Cov(wtg(Yy),wg(Y,)). (8.6) 
i=1 J=1 

Jfi 
The following results about the wi are immediate: 

1. P(w,=l) = (l/NK-1) = E(w1) = E(w,2) 
Var(w1) = (1/NK-)(1 - 1/NK-). 

2. If w, and wj correspond to cells having no cell 
coordinates in common, then 

E(wiw,) = E(w,wj w = O)P(wj = 0) 

+ E(wil wJ w= l)P(w = 1) 
= 1/(N(N- 1))K--1 

3. If wi and Wj correspond to cells having at least 
one common cell coordinate, then 

E(wfwj) = 0. 

Now 

Var(w(g(Yl)) = E(W,2) Var g(Y,) 

+ E2(g(Y,)) Var(w,) 

so that 

NK NK 

C Var(wg(Y1)) = N-K+1 E(g(Y,)-#,)2 

NK 

+ (N-K+ 1-N-N+2K) A 2 
1=1 

where ,i = E{g(Y) IX e cell i}. Since 

E(g(Y,)-t)2 = NK fcel I (g(y)-rT)f(x)dx + 

(8.7) 

(8.8) 

(.t-- r)2 

(8.9) 

we have 

X Var(wg(Yi)) = N Var(Y) - N-K+l (- Tr)2 
I I 

+ (N-K+l-N-2K+2) i #,2 
t 

(8.10) 

Furthermore 
NK NK 

? Cov(wg(rY), wg(rY)) = ?, uiE{wwiw} 
/=1 J=l iJ 

i,6 

- N-2K+2CZ iAj 
i?i 

(8.11) 

which combines with (8.10) to give 

Var(TL) = (l/N)Var(Y) - N-K-1 (i 
- 

T)2 
t 

+ (N-K - N-2K) : #,2 

+ (N- I)-K+lNK -'X M i 
R 

-N- 2KF Mi,I 
tij 

(8.12) 

where R means the restricted space of NK(N - 1)K 

pairs (uI,,j) corresponding to cells having no cell 
coordinates in common. After some algebra, and 
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with I iu = NKT, the final form for Var(TL) becomes 

Var(TL) = Var(TR) + (N - 1)/N[N-K(N - )-K 

* 
(i-T)(j-Tr)]. (8.13) 

R 

Note that Var(TL) < Var(TR) if and only if 

N-K(N - 1)-K (i-rT)(Lj-r) < 0, (8.14) 
R 

which is equivalent to saying that the covariance 
between cells having no cell coordinates in common 
is negative. A sufficient condition for (8.14) to hold is 
given by the following theorem. 

THEOREM. If Y = h(X1, ? ?, XK) is monotonic in 
each of its arguments, and if g(Y) is a monotonic 
function of Y, then Var(TL) < Var(TR). 

PROOF. The proof employs a theorem by Leh- 
mann [10]. Two functions r(x,, * * , XK) and s(y,, * ., 
YK) are said to be concordant in each argument if r 
and s either increase or decrease together as a func- 
tion of xi = yi, with all xj,j # i and yj,j # i held fixed, 
for each i. Also, a pair of random variables (X, Y) are 
said to be negatively quadrant dependent if P(X < x, Y 
< y) < P(X < x)P(Y < y) for all x, y. Lehmann's 
theorem states that if (i) (X,, Y1), (X2, Y2), .* , (XK, 
YK) are independent, (ii) (Xi, Yi) is negatively quad- 
rant dependent for all i, and (iii) X = r(X, . .., XK) 
and Y = s(Y1, .. , YK) are concordant in each argu- 
ment, then (X, Y) is negatively quadrant dependent. 

We earlier described a stage-wise process for select- 
ing cells for a Latin hypercube sample, where a cell 
was labeled by cell coordinates mi, ? ? , inK. Two cells 
(11, * * , IK) and (ml, . , mx) with no coordinates in 
common may be selected as follows. Randomly select 
two integers (R,,, R21) without replacement from the 
first N integers 1, .* , N. Let 11 = R,, and m, = R21. 
Repeat the procedure to obtain (R12, R22), (R13, R23), 
'* , (R1K, R2K) and let Ik = Rlk and mk = R2k. Thus 
two cells are randomly selected and Ik M mk for k = 1, 
* *, K. 

Note that the pairs (Rlk,R2k), k = 1, .. , K, are 
mutually independent. Also note that because P(Rlk 
< x, R2k < y) = [xy - min(x, y)]/(n(n - 1)) < P(Rlk 
< x)P(R2k < y), where [ ] represents the "great- 
estinteger" function, each pair (R1k, R2k) is negatively 
quadrant dependent. 

Let ,1 be the expected value of g(Y) within the cell 
designated by (1, . ., IK), and let #2 be similarily 
defined for (ml, .., mK). Then 1i = #(R,1, R12, . ., 

RIK) and #2 = A(R21, R22, .* * , R2K) are concordant in 
each argument under the assumptions of the theo- 
rem. Lehmann's theorem then yields that Al and g2 
are negatively quadrant dependent. Therefore, 

P(,l < x, ,2 < y) < P(jU < X)P(, < y). 

Using Hoeffding's equation 

Cov(X,Y) = J [P(X < x, Y < y) 

- P(X < x)P(Y < y)] dx dy, 

(see Lehmann [10] for a proof), we have Cov(l,,A2) < 
0. Since Var(TL) = Var(TR) + (N - l)/NCov(L1,42), 
the theorem is proved. 

Since g(t) as used in both Sections 3 and 5 is an 
increasing function of t, we can say that if Y = h(X) is 
a monotonic function of each of its arguments, Latin 

hypercube sampling is better than random sampling 
for estimating the mean and the population distribu- 
tion function. 
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